DOI QR코드

DOI QR Code

Comparison of Fine Grained Classification of Pet Images Using Image Processing and CNN

영상 처리와 CNN을 이용한 애완동물 영상 세부 분류 비교

  • Received : 2020.10.30
  • Accepted : 2021.03.09
  • Published : 2021.03.30

Abstract

The study of the fine grained classification of images continues to develop, but the study of object recognition for animals with polymorphic properties is proceeding slowly. Using only pet images corresponding to dogs and cats, this paper aims to compare methods using image processing and methods using deep learning among methods of classifying species of animals, which are fine grained classifications. In this paper, Grab-cut algorithm is used for object segmentation by method using image processing, and method using Fisher Vector for image encoding is proposed. Other methods used deep learning, which has achieved good results in various fields through machine learning, and among them, Convolutional Neural Network (CNN), which showed outstanding performance in image recognition, and Tensorflow, an open-source-based deep learning framework provided by Google. For each method proposed, 37 kinds of pet images, a total of 7,390 pages, were tested to verify and compare their effects.

영상의 세부 분류에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 방법 중 영상처리를 이용한 방법과 딥러닝을 이용한 방법을 비교하는 것을 목표로 한다. 본 논문에서 영상처리를 이용한 방법으로 객체 분리를 위해 Grab-cut 알고리즘을 사용하고, 영상 인코딩을 위해 Fisher Vector를 사용한 방법을 제안한다. 다른 방법으로는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 각각의 방법에 대해 37종의 애완동물 이미지, 총 7,390장에 대해 실험하여 그 효과를 검증 및 비교하였다.

Keywords

References

  1. Lingxi Xie, Jingdong Wang, Bo Zhang, and Qi Tian, "Fine-Grained Image Search," IEEE Transactions on multimedia, Vol. 17, No. 5, pp. 636-647, May 2015. https://doi.org/10.1109/TMM.2015.2408566
  2. C. Spampinato, S. Palazzo, P.H. Joalland, "Fine-Grained object recognition in underwater visual data," Proceeding of the Springer Science+Business Media, New York, pp. 1-20, 2015.
  3. S Yu, Y Wu, W Li, Z Song, W Zeng, "A model for fine-grained vehicle classification based on deep learning," Neurocomputing, Vol. 257, pp. 97-103, 2017. https://doi.org/10.1016/j.neucom.2016.09.116
  4. Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, C. V. Jawahar, "cats and dogs," IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498-3505, 2012.
  5. C Rother, V Kolmogorov, A Blacke, "Grabcut: Interactive foreground extraction using iterated graph cuts," ACM transactions on Graphics(TOG), Vol. 23, No. 3, pp. 309-314, August 2004. https://doi.org/10.1145/1015706.1015720
  6. Yubing Li, Jinbo Zhang, Peng Gao, Liangcheng Jiang, Ming Chen, "Grab Cut Image Segmentation Based on Image Region," IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), pp. 311-315, 2018.
  7. C. Dance and F. Perronnin, "Fisher Kernels on Visual Vocabularies for Image Categorization," Proceeding of the IEEE Conference on Computer Vision, Minneapolis, pp. 1-8, 2007.
  8. PH Gosselin, N Murray, H Jegou, F Perronnin, "Revisiting the fisher vector for fine-grained classification," Pattern recognition letters, Vol. 49, pp. 92-98, 2014. https://doi.org/10.1016/j.patrec.2014.06.011
  9. Gabriella Csurka, Christopher R.Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, "Visual categorization with bags of keypoints," Proceeding of the workshop on statistical learning in Computer Vision, ECCV, pp. 1-16, 2004.
  10. Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C.V.Jawahar, "The Oxford-IIT Pet Dataset", 2012.
  11. Tianmei Guo, Jiwen Dong, Henjian Li, Yunxing Gao, "Simple convolutional neural network on image classification," IEEE 2nd International Conference on Big Data Analysis (ICBDA), pp. 721-724, 2017.
  12. Kiran SeetalaWilliam BirdsongYenumula B. Reddy, "Image classification using Tensorflow," 16th International Conference on Information Technology-New Generations (ITNG 2019), pp. 485-488, 2019.