DOI QR코드

DOI QR Code

열유동 해석을 이용한 강합성 및 PSC 교량 상부구조의 화재손상평가

Fire Damage Assessment for Steel-Concrete Composite and PSC Bridge Superstructures Using Heat Flow Analysis

  • 박양흠 (금오공과대학교 토목공학과) ;
  • 윤성환 (한국도로공사 도로교통연구원 구조물연구실) ;
  • 장일영 (금오공과대학교 토목공학과)
  • 투고 : 2020.12.14
  • 심사 : 2021.01.09
  • 발행 : 2021.04.01

초록

본 논문은 교량 하부에서 발생된 화재에 대한 강합성 교량 및 PSC 교량 상부구조의 화재손상평가를 위한 수치해석적 연구이다. 수치해석의 정확성 및 효율성을 높이기 위해 구성재료의 과도 비선형 열적 특성이 고려된 열유동 해석 기법이 제안되고, 이를 통해 국내 실제 화재가 발생된 강합성 교량인 부천고가교 및 PSC 교량인 양산고가교에 대한 열유동 화재해석이 수행된다. 해석결과 강합성 교량 상부구조의 콘크리트 슬래브 및 강재 거더 하부 플랜지의 경우 임계온도를 초과하였고, PSC 교량 상부구조의 슬래브, 상부 및 하부 플랜지, 그리고 복부의 경우 전부 임계온도를 초과하였으나, 주요 부재인 텐던의 경우 임계온도를 초과하지 않았다.

The objective of this research is to evaluate of fire damage for steel-concrete composite bridge superstructure and PSC bridge superstructure under highway bridge exposed to fire loading. To enhance the accuracy and efficiency of the numerical analysis, the proposed heat flow fire analysis method is implemented in ANSYS. The proposed heat flow analysis method is applied to fire damage analysis and performance evaluation for Buchen and Yangsan highway bridge. The result of analysis, temperature of concrete slab and lower flange of steel-concrete composite bridge superstructure are exceed the critical temperature. Also, temperature of slab, lower and upper flange, web of PSC bridge superstructure are exceed the critical temperature. However, the major component, tendon, did not exceed the critical temperature.

키워드

참고문헌

  1. ANSYS (2007). ANSYS release 11.0 documentation, ANSYS Inc., USA.
  2. ASTM E119-82 (2000). Standard methods of fire tests of building construction and materials, American Society for Testing and Materials.
  3. Choi, J. H. (2008). Concurrent fire dynamics models and thermomechanical analysis of steel and concrete structures, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, USA.
  4. Croce, P. A. and Mudan, K. S. (1986). "Calculating impacts for large open hydrocarbon fires." Fire Safety Journal, Vol. 11, No. 1-2, pp. 99-112. https://doi.org/10.1016/0379-7112(86)90055-X
  5. EUROCODE 2 (2004). Design of concrete structures, Part 1, 2: General rules, structural fire design, European Committee for Standardization.
  6. EUROCODE 4 (2005). Design of composite steel and concrete structures, Part 1, 2: General rules, structural fire design, European Committee for Standardization.
  7. KEC (2011). Bucheon highway bridge fire restoration design and construction, Korea Expressway Corporation, Gimcheon, Korea (in Korean).
  8. Kodur, V. K. R. and Phan, L. (2007). "Critical factors governing the fire performance of high strength concrete systems." Fire Safety Journal, Vol. 42, No. 6-7, pp. 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
  9. Kodur, V., Gu, L. and Garlock, M. E. M. (2010). "Review and assessment of fire hazard in bridges." Journal of the Transportation Research Board, Vol. 2172, No. 1, pp. 2-29.
  10. NFPA 502 (2008). Standard for road tunnels, bridges, and other limited access highways, National Fire Protection Association.