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For elementary school children, learning the standard multiplication algorithm with 

accuracy, clarity, consistency, and efficiency is a daunting task. Nonetheless, what should 

be our expectation in procedural fluency, for example, in finding the product of 25 and 37 

among fifth grade students? Collectively, has the mathematics education community 

emphasized the value of conceptual understanding to the detriment of procedural fluency? 

In addition to examining these questions, we survey multiplication algorithms throughout 

history and in textbooks and reconceptualize the standard multiplication algorithm by 

using a new tool called the Multiplication Aid Template. 
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I. INTRODUCTION 

 

At present, all modern societies have adopted the use of the Hindu-Arabic numerals and 

their use in the place-value, decimal number system.  For example, travelers, throughout 

the world, will concur that Gate 123 at an airport represents “Gate One Hundred, Two Tens, 

and Three Ones.”  We could also venture and verify that the nearby gates might be Gate 

121, Gate 122, Gate 124, and Gate 125.  In short, we expect a systematized, standard 

approach to numbering so that the information is useful. 

What constitutes a standard in a particular context?  How do we unequivocally state a 

well-defined standard for all to embrace?  In regard to mathematics education standards, 

in 1980, the National Council of Teachers of Mathematics (NCTM) published An Agenda 
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for Action.  In the subsequent years, the visionary document provided the impetus for 

Curriculum and Evaluation Standards (1989), Professional Teaching Standards (1991), 

and Assessment Standards (1995).  In 2000, NCTM’s Principles and Standards for School 

Mathematics further articulated:  

 

The Principles are statements reflecting basic precepts that are 

fundamental to a high-quality mathematics education. The document 

elaborates the underlying assumptions, values, and evidence on which 

these Principles are founded. The Standards are descriptions of what 

mathematics instruction should enable students to know and do. Together, 

the Principles and Standards constitute a vision to guide educators as 

they strive for the continual improvement of mathematics education in 

classrooms, schools, and educational systems. (NCTM, 2000, p. 2)  

 

2010 ushered in the era of The Common Core State Standards for Mathematics 

(CCSSM).  Educators, who work with preservice teachers in the United States, are familiar 

with the Council for the Accreditation of Educator Preparation (CAEP) Standards.  

Typically, organizations, such as the NCTM, have the purview to articulate subject-specific 

standards.  Afterall, the NCTM is the largest mathematics education organization in North 

America.  To actualize the focus, rigor, and cohesiveness of the CCSSM, the National 

Governors Association and Council of Chief State School Officers (NGA & CCSSO) 

provided both the funding and the mandate.   

To counter the often stated “a mile wide and an inch deep mathematics curriculum,” the 

mathematics education community at large has underscored the need to develop children’s 

conceptual understanding of mathematics.  Nonetheless, what should be our expectation 

in procedural fluency, for example, in finding the product of 25 and 37 among fifth grade 

students?  Collectively, has the community emphasized the value of conceptual 

understanding to the detriment of procedural fluency?  In this paper, we (1) survey 

multiplication algorithms throughout history and in textbooks, (2) gauge procedural 

fluency among U.S. fifth graders in multiplying 25 and 37, and (3) reconceptualize the 

standard multiplication algorithm. 

 

 

II. MULTIPLICATION ALGORITHMS THROUGHOUT HISTORY  

AND IN TEXTBOOKS 

 

In this section, we first survey several multiplication algorithms that were utilized 

throughout history.  Then, we shift our focus toward how textbooks present the standard 



Where’s the Procedural Fluency?: U.S. Fifth Graders’ Demonstration of the Standard Multiplication Algorithm 3 

multiplication algorithm for elementary school students in the United States and South 

Korea.  Finally, we examine how college textbooks elaborate on the standard multiplication 

algorithm for preservice teachers.  

 

1. MULTIPLICATION ALGORITHMS THROUGHOUT HISTORY 

 

In Number Stories of Long Ago (1919), David Eugene Smith documents the myriad 

multiplication algorithms throughout history.  For instance, in Figure 1, Fibonacci (a.k.a. 

Leonardo of Pisa), in 1202, multiplied 49 and 8 in the following manner (Smith, 1919,  p. 

66): 

 

 

 

Figure 1. Fibonacci’s work on 49 × 8 

  

Compared to a contemporary multiplication algorithm, we note the following 

differences: 

1. The product (392) appears above the multiplicand (49) and the 

multiplier (8). 

2. There is an omission of the horizontal line segment that separates the 

multiplicand and multiplier to the product. 

3. There is an omission of a symbol, such as ×, to convey the 

multiplication operation. 

4. Finally, there is no “work” to reveal the utilized algorithm. It is 

plausible that the multiplicand and multiplier are small enough to 

deduce the product mentally. 

About three centuries later, Cuthbert Tonstall, a theologian and mathematician during 

the 16th-century England, provided the below work (Figure 2) in multiplying two multi-

digit whole numbers (Smith, 1919, p. 67):  

 

 

 

 

 

 

 

 

Figure 2. Tonstall’s work on 60503 × 4020  
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The Tonstall’s algorithm addresses the three differences between the Fibonacci’s and a 

contemporary multiplication algorithm.  Specifically, we observe:  (1) The product appears 

below the multiplicand and multiplier; (2) the horizontal line segments separate the 

multiplicand and multiplier from the partial products as well as the product; (3) a reader 

can easily comprehend the detailed, partial-products work.  Even though the context would 

have been obvious, we do not see a symbol for the multiplication operation. 

In addition, we discern: 

1. The value, 00000, represents the product of 60503 and 0.  If traveling 

back in time were possible, one could surely inquire, “Why the need 

for so many zeros?” 

2. It is notable that, in the year 1522, we see the detailed work showing 

the leftward shifts of the partial products to account for the place 

values of the multiplier (4020).   

The below unique multiplication algorithms (Figures 3 through 5) appeared in 1478 

(Smith, 1919, pp. 70-71).  In Figure 3, to multiply 934 by 314, each digit of 314 shifts 

diagonally left and downward with the units value (4) appearing on the top right, followed 

by the tens value (10) on the second line, and finally, the hundreds value (300) on the third 

line.  Similar to the Tonstall’s algorithm, we observe the leftward shifts of the partial 

products (3736, 9340, and 280200) with the implied, underlined 0s.  The work aligns quite 

nicely due to the aid of the “forward slashes” ( ). 

 

 
 

 

 

 

Figure 3. Fifteenth century algorithm on 934 × 314 (a) 

 

In Figure 4 below, we observe the multiplication work comprising the same factors.  

Can you discern the algorithm?  Pause for a few minutes and decipher the algorithm.   

 

 

 

 

 

 

Figure 4. Fifteenth century algorithm on 934 × 314 (b) 
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Comparable to the above Figure 3 work, we discernibly notice the multiplicand (934), 

the multiplier (314), the modified partial products (3736, 934, and 2802), and the product 

(293276).  In particular, we highlight the following:  There is a precise, grid arrangement 

that corresponds to the modified partial products between the multiplicand (934) and each 

digit of the multiplier in reverse order (i.e., 4, 1, 3 instead of 3, 1, 4).  Moreover, it appears 

the grid work of Figure 4, while aligned to the product (293276), is not aligned to the 

multiplicand (934).  In other words, the digits, 9, 3, and 4, are not aligned with the digits, 

3, 7, 3, and 6.  At this point, one might still wonder, “How do we actually obtain the product 

from the displayed work?”  The answer may lie in the next algorithm.   

Figure 5 represents what is commonly known as the lattice method.  First, we can clearly 

see the same multiplicand (934) horizontally on the top and the same multiplier (314) 

vertically to the right.  Contrary to the two previous examples, 314 is written in the reverse 

order, i.e., the hundreds value (300) appears on the top, followed by the tens value (10) on 

the second line, and finally, the units value (4) on the third line.  Next, this particular lattice 

(or the grid construction) has nine partial products.  For example, since 4 × 3 = 12 and         3 

× 3 = 9, these products are represented as 1  2 and 0  9 respectively.  After determining 

the nine products, the remaining task is to combine the values to find the product.  Adding 

the diagonal values between the forward slashes, we have the following: 

6 (the first value from the bottom right) 

 7 (the sum of 2 + 1 + 4 is 7) 

2 (the sum of 6 + 1 + 3 + 0 + 2 is 12; after carrying the 1 ten into the next 

diagonal group, the resulting value is 2) 

3 (the sum of 3 + 9 + 0 + 9 + 1 is 22; after carrying the 2 tens into the next 

diagonal group and combining the previously carried value of 1, the 

resulting value is 3) 

9 (the sum of 0 + 7 + 0 is 7; after combining the previously carried value 

of 2, the resulting value is 9) 

 2 (the last value from the top left)  

Writing the above values in reverse order (or the values wrapped along the left side to the 

bottom), we obtain the product, 293276.  It is worthwhile to devote some time to understand 

why the lattice method produced the correct answer.   
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Figure 5. Fifteenth century algorithm on 934 × 314 (c) 

 

Now, let us return to the Figure 4 work.  Having examined the above lattice method, we 

could conjecture that to obtain the correct product, 293276, we begin with the upper-right 

value, 6.  Next, from 6 and if we consider the set of diagonally right and downward values 

(3 and 4), we obtain the sum of 7.  Continuing this scheme, we can deduce the rest of the 

values:  

2 (the sum of 7 + 3 + 2 is 12; after carrying the 1 ten into the next diagonal 

group, the resulting value is 2) 

3 (the sum of 3 + 9 + 0 is 12; after carrying the 1 ten into the next diagonal 

group and combining the previously carried value of 1, the resulting 

value is 3) 

9 (after combining 8 and the previously carried value of 1, the resulting 

value is 9) 

2 (the last value from the bottom left)   

Again, writing the above values in reverse order, we obtain the product, 293276.  We note 

that the articulated algorithm could have been the plausible approach back in the 15th 

century. 

 

2. THE STANDARD MULTIPLICATION ALGORITHM 

IN U.S. TEXTBOOKS 

 

Everyday Mathematics is one of the most popular elementary school mathematics 

textbook series in the United States.  In 2012, Everyday Mathematics published its first 

Common Core State Standard Edition.  In the 4th grade Student Reference Book (Bell et 

al., 2012a, p. 18), we see the following example (Figure 6): 
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Figure 6. Everyday Mathematics’ partial-products method (a) 

 

Using the * symbol to represent the multiplication operation, the example provides the 

steps to finding the product of 26 and 5.  After stating, “Think of 26 as 20 + 6,” we see the 

partial-products method:  First, obtain 100 from 5 * 20 and then, 30 from 5 * 6.  The order 

in multiplying 5 by 20 first and then 5 by 6 appears to be atypical.  Learning the partial-

products method itself is valuable and also serves as a precursor to the standard 

multiplication algorithm.  However, the order in obtaining the partial products (100 and 30) 

may not easily translate into the sequential steps of the standard multiplication algorithm.   

Another example (Figure 7) in the Student Reference Book (Bell et al., 2012a, p. 18) 

appears to confirm that given 26 * 34, the objective is to multiply the higher value (or the 

tens value (30)) of the multiplier with 20 first and then 6.  The remaining steps involve 

multiplying the units value (4) of the multiplier with 20 first and then 6.  The textbook 

refers to the multiplication of two single-digit whole numbers as “basic multiplication fact,” 

while the multiplications involving a number with powers of 10 as “extended multiplication 

facts.” 

 
Figure 7. Everyday Mathematics’ partial-products method (b) 
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Regarding the standard multiplication algorithm, the Teacher’s Lesson Guide (Bell et 

al., 2012b, p. A23) provides the below example (Figure 8): 

 

 

 

 

 

 

 

 

Figure 8. Everyday Mathematics’ traditional multiplication algorithm 

 

The Teacher’s Lesson Guide refers to this algorithm as “U.S. traditional multiplication.”  

To determine 147 * 30, the work comprises the carried value of 200 from 7 * 30.  Yet, the 

“2” is placed in the tens place, and there lies an inherent contradiction.  While this has been 

the “traditional” approach, it should no longer be the “standard” method.  Incredulously, 

the authors (p. A23) acknowledge: 

 

Many people, when asked why the “2” carried from “3 * 7” is written in 

the 10s place, will explain that it stands for “2 tens.” But this “2” really 

means “2 hundreds” since the “3” is really “3 tens.” U.S. traditional 

multiplication is efficient—though not as efficient as a calculator—but it 

is not, despite its familiarity, conceptually transparent. 

 

In short, they readily admit that placing the carried value, 200, in the tens place “is not ... 

conceptually transparent.”  However, there is no effort to rectify this.  In the last section of 

this paper, we shall resolve the mathematical inconsistency. 

The Figure 9 example is also found in the Everyday Mathematics’ Student Reference 

Book (Bell et al., 2012a, p. 19).  Employing the familiar lattice method to find the same 

product, the authors missed an opportunity: They could have guided students to make sense 

of the connection between the lattice and the partial-products methods. When students 

connect mathematical ideas, their understanding is deeper and more lasting, and they come 

to view mathematics as a coherent whole” (NCTM, 2000, p. 4).  Isn’t learning richer to 

have the conceptual understanding behind the procedures?  Contrarily, we see the very 

prescriptive steps without any justification. 
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Figure 9. Everyday Mathematics’ lattice method 

 

3. THE STANDARD MULTIPLICATION ALGORITHM 

IN SOUTH KOREAN TEXTBOOKS 

 

Unlike the United States, South Korea has had the nationalized mathematics education 

standards since 1955.  The First National Curriculum, from 1955 to 1963, had the theme, 

“Real Life,” followed by “Mathematics Structure,” “New Math,” “Back to Basics,” 

“Problem Solving,” “Problem Solving and Informational Society,” “Learner,” etc.  Until 

recently, the country had also developed and disseminated the nationwide-adopted 

mathematics textbooks for all elementary school students. 

In Mathematics in Grade 3, Volume 2: Teacher’s Guide (Korean Ministry of Education, 

2014a, p. 15), we have the below example (Figure 10) demonstrating the standard 

multiplication algorithm to multiply 216 by 2: 

 

 

 

 

 
 

Figure 10. Korean textbook’s standard multiplication algorithm (a) 

 

Left to right, there is a relevant progression showing the multiplication between 2 and the 

factors, 6, 10, and 200.  The vertical line segments, as well as the use of color numbers, 

offer an added focus.  The algorithm clearly displays the carried value, 10, from 6 × 2.  
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Another work sample (Figure 11) from the Teacher’s Guide (Korean Ministry of 

Education, 2014a, p. 144) represents an effective guided learning.  First, students can 

inspect the partial-products and the standard multiplication algorithm work involving 128 

× 2.  Then, given a comparable expression, 317 × 2, they need to emulate the modeled 

work.   

Figure 11. Korean textbook’s standard multiplication algorithm (b)  

 

Another example (Figure 12) from the Teacher’s Guide (Korean Ministry of Education, 

2014a, p. 23) provides the steps to finding the product of 52 × 13.  The use of the vertical 

line segments to encourage students to align their work is applicable.  It is quite odd that 

the authors felt a need to omit the “0” from the partial-product, 520, in stage three.  Actually, 

we would prefer—and it makes more sense—to leave the value, 520, as is. 

 

 

 

 

 

 

Figure 12. Korean textbook’s standard multiplication algorithm (c) 

 

Unlike the above Figure 10 work, our final example (Figure 13) from the Teacher’s 

Guide (Korean Ministry of Education, 2014a, p. 25) omits any carried values.  This may 

have been an oversight since it is too much to demand from third-grade students to compute 

these values mentally. 

 

 

 

 

 
 

 

Figure 13. Korean textbook’s standard multiplication algorithm (d) 
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The Figure 14 example is from Mathematics in Grade 4, Volume 1: Teacher’s Guide 

(Korean Ministry of Education, 2014a, p. 196).  Similar to the above Figure 12 example, 

there is no emphasis in showing the carried values.  Most likely, the task to introduce and 

reinforce the standard multiplication algorithm is left for teachers. 

 

 

 

 

 

 
Figure 14. Korean textbook’s standard multiplication algorithm (e) 

 

On page 71 of the same Teacher’s Guide (Korean Ministry of Education, 2014b), there 

is the detailed explanation (Figure 15) to find the product of 374 and 58 with the use of the 

lattice method.  One the left, the table values correspond to 374 times 1 through 9 in the 

lattice form.  On the right, there is an emphasis that the diagonal values correspond to the 

place values.   

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Korean textbook’s lattice method 

 

While the U.S. lattice model (Figure 9) carries over tens from each place value, the 

South Korean lattice model does not carry over.  Instead, the lattice model tabulates the 

partial products, for example, 10000, 10000, 1600, 90, and 2, from each place value. 
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4. THE STANDARD MULTIPLICATION ALGORITHM  

IN TEXTBOOKS FOR PRESERVICE TEACHERS 

 

In this section, we examine how two textbooks for prospective elementary school 

teachers present the standard multiplication algorithm.  

A Problem Solving Approach to Mathematics for Elementary School Teachers (2020) 

by Billstein, Boschmans, Libeskind, and Lott is a popular selection among the U.S. teacher 

education programs.  In the below work sample (Figure 16), the authors demonstrate how 

to obtain the partial products of 23 × 14 with the use of the base-ten blocks (p. 153).   

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Billstein’s partial-products method (a) 

 

In Figure 17, the authors demonstrate procedurally the partial-products method and de-

emphasize the order of the partial products.  If one were to adopt the order of 200, 30, 80, 

and 12, then this algorithm will not align well with the standard multiplication algorithm.   

 

 

 

 

 

 

 

 

Figure 17. Billstein’s partial-products method (b) 

 

The authors further claim that the above work “leads to an algorithm for multiplication” 

(Figure 18, p. 153).  It appears the standard multiplication algorithm is simply indicated to 

show how it is connected to the partial-products method.  There is no effort to expound 

upon the steps to finding the product by using the standard multiplication algorithm.  In 
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particular, we do not see the carried value, 10, from 3 × 4.  Moreover, there is no 

engagement with any complex examples that require more detailed work.  Most likely, the 

task to expand upon the standard multiplication algorithm is left for professors. 

 

 

 

 

 

 

 
Figure 18. Billstein’s standard multiplication algorithm (a) 

 

A notable example from the textbook includes the Tonstall’s approach to finding the 

product (Figure 19, p. 153). 

 

 

 

 

 

 

 

 

Figure 19. Billstein’s standard multiplication algorithm (b) 

 

 Beckmann’s Mathematics for Elementary Teachers with Activities (2018) may be the 

most used textbook to reconceptualize mathematical topics for prospective elementary 

school teachers.  To help construct the reasoning behind why, for example, multiplying 34 

by 10 will shift 3 tens to 3 hundreds and 4 ones to 4 tens, the author provides the below 

illustration (Figure 20, p. 150).  This is comparable to the Everyday Mathematics’ reference 

to the “extended multiplication facts.”  In addition, students need to recall this important 

concept when applying the standard multiplication algorithm. 
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Figure 20. Beckmann’s multiplication by 10 illustration 

 

Similar to Billstein and his colleagues’ textbook (2020) and the previously examined 

elementary school mathematics textbooks, Beckmann (2018) presents the partial-products 

method and connects it to the standard multiplication algorithm.  Specifically, Figure 21 

(p. 186) provides the six partial products from 764 × 58.  By combining these products 

strategically, i.e., 32 + 480 + 5600 = 6122 and 200 + 3000 + 35000 = 38200, she 

demonstrates the connection between the algorithms.  Beckmann prefers to call the 

standard multiplication algorithm the “Common Method.”   

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Beckmann’s linking between the partial-products method  

and the standard multiplication algorithm 
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We would like to point out that Beckmann displays the four carried values above and 

near the digits 7 and 6 of the multiplicand, 764.  Without any further clarification, she 

appears to presume that preservice teachers will understand their purpose. 

 

 

III. PROCEDURAL FLUENCY OF 25 × 37 AMONG U.S. FIFTH GRADERS 

 

Having surveyed a historical progression of multiplication algorithms and a review of 

the algorithms in the textbooks, we now attend to elementary school students’ 

understanding of the multiplication algorithm. Student work samples will provide us a 

more tangible picture of their procedural understanding and misunderstanding.  

By 2014, the Commonwealth of Pennsylvania rebranded a version of the CCSSM 

and implemented The Pennsylvania Core Standards in Mathematics (PCSM).  Like many 

states, the reason for removing the word, “Common,” was to disassociate from the 

perceived “nationalized” mathematics curriculum and to retain the Commonwealth’s 

identity and autonomy.  Despite the different titles, the PCSM mirrors the CCSSM.  

Recall the task:  Find the answer to 25 × 37.  Do the sampled Pennsylvania fifth 

graders demonstrate a great deal of congruence in their work?  Does the overall work 

display a ubiquitous approach that could be deemed as the “standard” multiplication 

algorithm?  Before answering these questions, we first examine the progression of the 

CCSSM in the context of developing students’ procedural fluency and conceptual 

understanding of multiplication.  Specifically, we underscore below the relevant standards 

and illustrative examples found in the grades 2 through 5.  

Grade 2:  Work with equal groups of objects to gain foundations for 

multiplication. (For example, “by pairing objects or counting 

them by 2s; write an equation to express an even number as a 

sum of two equal addends”) (NGA & CCSSO, 2010, p. 19). 

 Grade 3:   Represent and solve problems involving multiplication and 

division. (For example, “describe a context in which a total 

number of objects can be expressed as 5 ×  7.”) 

  Understand properties of multiplication and the relationship 

between multiplication and division. (For example, “if 6 ×  4 = 

24 is known, then 4 ×  6 = 24 is also known. (Commutative 

Property of Multiplication)”) 

  Multiply and divide within 100. (For example, “knowing that 

8 ×  5 = 40, one knows 40 ÷ 5 = 8... By the end of Grade 3, 

know from memory all products of two one-digit numbers 

[emphasis added]”) (NGA & CCSSO, 2010, p. 23).  
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Grade 4:  Use the four operations with whole numbers to solve problems. 

(For example, “interpret 35 = 5 ×  7 as a statement that 35 is 5 

times as many as 7 and 7 times as many as 5.”) 

Use place value understanding and properties of operations to 

perform multi-digit arithmetic. (For example, “fluently add and 

subtract multi-digit whole numbers using the standard 

algorithm”) (NGA & CCSSO, 2010, p. 29).  

Grade 5:  Understand the place value system. (emphasis added) (For 

example, “explain patterns in the number of zeros of the 

product when multiplying a number by powers of 10.”) 

 Perform operations with multi-digit whole numbers and with 

decimals to hundredths. (For example, “fluently multiply 

multi-digit whole numbers using the standard algorithm 

[emphasis added]”) (NGA & CCSSO, 2010, p. 35).  

In the CCSSM, developing the concept of multiplication traverses four grades.  As the 

above Clusters indicate, the Common Core underscores students to make sense of the 

concept of multiplication before finalizing with the “standard algorithm.”  In particular, 

having completed grade 3, students are expected “to know from memory all products of two 

one-digit numbers.”  Moreover, having completed grade 5, students are expected to 

“fluently multiply multi-digit whole numbers using the standard algorithm.”  (Note that we 

need to stress that the CCSSM is not a curriculum.  The standards do not explicitly articulate 

how to teach and learn mathematics.  In the United States, it can be daunting to formulate 

a set of cohesive standards at the state level, to interpret them accurately at the district level, 

to adopt the standards-aligned textbooks and resources at the school level, and to teach in 

the spirit of the standards at the classroom level.) 

It is essential to emphasize that the data from the 12 fifth graders was collected toward 

the end of the academic year and come from one school district in western Pennsylvania.  

All students had had their mathematics learning articulated by the PCSM-aligned 

curriculum.  For the last two years, the students had had the same mathematics teachers.  

More poignantly, the students had had very similar mathematical teaching and learning 

experiences.   

Procedural fluency presupposes an accurate and efficient way to find the solution to     

25 × 37.  Among the twelve fifth grade students, we might expect one or two to make errors 

that result in wrong answers.  Unexpectedly and dishearteningly, we discovered that five 

out of twelve students could not determine the product (925).  First, we shall examine the 

detailed work relating to the correct solution.  Then, our focus turns to the detailed work 

relating to the incorrect work.  Throughout our analysis, we shall explore:  Are there any 

patterns to the students’ work?   
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Two students produced the below work (Figure 22): 

 

 

 

 

 

 

 

 

 

Figure 22. Students’ correct work using the standard multiplication algorithm (a) 

 

We see the product, 175, from 25 × 7.  The students indicated carrying 30 from 5 × 7 by 

placing 3 above 2 in the tens place value.  Unconventionally, the students crossed out 7, 

perhaps, to signify having used the factor.  Interestingly, the students also crossed out the 

carried value, 30, because it had been used to find the product of 25 x 7.  Next, we see the 

product, 750, from 25 × 30.  Similarly, the students indicated carrying “10” from 5 × 3 by 

placing 1 above 3 in the tens place value.  This multiplication algorithm also includes the 

use of the × symbol for the multiplication operation and the + symbol to denote the addition 

of the partial products (175 and 750).  The students inserted the horizontal line segments 

to separate the multiplicand and multiplier to the partial products and also to the correct 

product (925).  Finally, a “small 1,” above the hundreds place value of 175, is noticeable 

and indicates carrying 100 from 70 + 50.  

The below student work (Figure 23) is virtually identical to the above work in Figure 

22.  The only difference lies in the “small 1” appearing next to the hundreds place value of 

175. 

 

 

 

 

 

 

 

 

Figure 23. Student’s correct work using the standard multiplication algorithm (b) 
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Compared to the previous work samples, the below work (Figure 24) provides a slight 

variation:  7 is not crossed out. 

 

  

 

 

 

 

 

 

 

Figure 24. Student’s correct work using the standard multiplication algorithm (c) 

 

In the Figure 25 work, the student did not cross out 7 or 3.  Furthermore, she circled the 

three carried values to highlight their significance.  Two of the carried values are indicated 

as +1 and +3, not simply 1 and 3.  One could also make a case that there is the + symbol 

accompanying the “small 1.” 

 

 

 

 

 

 

 

 

Figure 25. Student’s correct work using the standard multiplication algorithm (d) 

 

In the Figure 26 work, the student did not cross out 7 or 3.  While adding the partial 

products of 175 and 750, he omitted the “small 1,” the carried value. 

 

 

 

 

 

 

 

 

 

Figure 26. Student’s correct work using the standard multiplication algorithm (e) 
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The Figure 27 work below rounds out the seven students’ approaches toward the correct 

solution.  This particular student decided to display only two of the three carried values and 

emphasized the “small 1” by circling it and attaching the + symbol.  She may have erased 

the carried value, 3, and wrote the other carried value, 1, in its place.  Like several other 

students, she did not cross out 7.  Unlike the previous work samples, there is less care into 

aligning the digits to correspond to their place values.  For example, the 7 tens and 5 tens 

from the partial products are not right below the 2 tens and 3 tens.  A plausible explanation 

could be that while one of the authors wrote the original values (25 and 37) and their 

spacing, the student’s own spacing is based on her typical work. 

 

 

 

 

 

 

 

 

 
Figure 27. Student’s correct work using the standard multiplication algorithm (f) 

 

From the correct solutions, we noticed that the students flexibly accommodated the 

standard algorithm of multiplication.  When students understand the concept behind the 

algorithm, they are able to customize the algorithm and efficiently use it. 

To contrast with the above multiplication algorithms that produced the correct solution, 

we shall now examine five incorrect work samples.  In particular, we want to make sense 

of the students’ shortcomings and to explore some practical ways to overcome them. 

The below Figure 28 work is essentially identical to the previous Figure 25 work.  

Despite getting the correct product, 35, from 5 × 7, the student incorrectly concluded 165 

for 25 × 7.  Hence, compared to 925, his answer differs by 10. 

 

  

 

 

 

 

 

 

 

Figure 28. Student’s incorrect work using the standard multiplication algorithm (a) 
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In Figure 29, the student erroneously equated 25 × 7 as 75.  Upon a closer examination, 

readers will concur that the “small 1” represents the carried value of 100 from 70 + 50.  

Thus, instead of 175, by using 75 as the partial product of 25 × 7, her answer differs by 

100. 

 

 

 

 

 

 

 

Figure 29. Student’s incorrect work using the standard multiplication algorithm (b) 

 

In the below Figure 30 work, the student incorrectly concluded that 25 × 30 as 650.  

This error was made despite his indication that 5 × 30 as 150 for we can clearly see that the 

carried value (100) is in the “hundreds” place at the top.  We note that this is the first work 

sample that carried the value to the hundreds place.  All prior work placed 1 in the tens 

place value.  On the other hand, we cannot conclude with certainty whether the intention 

was to place the carried value in the hundreds place.  The notation could simply indicate 

“the carried value.” 

 

 

 

 

 

 

 

Figure 30. Student’s incorrect work using the standard multiplication algorithm (c) 

 

In Figure 31, comparable to the above Figure 30 work, the carried value, 100, from          

5 × 30, is located closer to the hundreds place.  Moreover, there are multiple errors in 

concluding that 25 × 7 as 160:  It appears the student determined 5 × 7 as 30.  This error is 

plausible if he counted by the multiples of 5, such as, 5, 10, 15, 20, 25, 30, but miscounting 

7 times.  Regardless of the underlying error, he has clearly not met the standard:  By the 

end of Grade 3, know from memory all products of two one-digit numbers (NGA & CCSSO, 

2010, p. 23).  To compound his misunderstanding, he deduced 20 × 7 + 30 as 160.  

Furthermore, he stopped with the partial products and did not pursue the final answer.  This 

work sample does not model the Common Core’s Standards for Mathematical Practice 1:  
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Make sense of problems and persevere in solving the problem (emphasis added, NGA & 

CCSSO, 2010, p. 6). 

 

 

 

 

 

 

 

 
Figure 31. Student’s incorrect work using the standard multiplication algorithm (d) 

 

There is much to unpack in the final incorrect work sample (Figure 32).  First, in the 

center, we recognize a common strategy in using a two-by-two grid work (so called “the 

area model for multiplication”) to determine the partial products from 20 × 7, 5 × 7,             20 

× 30, and 5 × 30.  The student completed this portion rather satisfactorily.  To the right, we 

see her effort to add the partial products (600, 150, 140, 35).  While finding the correct sum 

would lead to the correct answer, she concluded 895.  Most likely, she overlooked the value, 

30.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Student’s incorrect work using the standard multiplication algorithm (e) 

 

Next, disassociating from all preceding work, she provided additional work around the 

originally posed question.  On the left, she indicated the groupings of (25 and 7) and (25 

and 3).  To find 25 × 7, she carried the correct value, 30, and yet, wrote down 205.  This 

may be due to adding 140 (the product of 20 and 7), 30 (the carried value), and 35 (the 

product of 5 and 7).  To find 25 × 3, she may have multiplied 5 and 3 to get 15, and then 

multiplied 2 and 3 to get 6.  Rearranging these partial products in a creative manner, she 
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wrote 156.  Furthermore, we observe that she found the sum of 205 and 156 as 897.  Upon 

a closer examination, we can see some indication of erased value, 461, that most likely 

corresponds to the sum value of 205 and 156.  Recognizing the contradictory values 

between this sum and 895, she opted to copy—and yet miscopied—895 (the value on the 

right) as 897.  We further conjecture that having tried to find the product in two different 

ways that resulted in two different answers, she placed her trust in the work that led to the 

value, 895.  After all, she could have easily verified the four partial products.  Along the 

way, she also dismissed the obvious contradiction:  The sum of 205 and 156 is not equal to 

897.  Finally, she circled and equated both values, 895 and 897, as a flippant way to say, 

“I got the same answer.”  Regardless of the underlying errors, she has clearly not met the 

standard:  Fluently multiply multi-digit whole numbers using the standard algorithm.  

If she had understood the connections between the partial products obtained by using 

the algorithm and by using the area model, she would have verified that 25 × 7 (from the 

algorithm) equals 140 + 30 (from the area model) and 25 × 30 (from the algorithm) equals 

600 + 150 (from the area model).  As educators, we would all welcome an opportunity to 

interview the student in order to understand her thinking processes more completely.  

The first three incorrect work samples, represented by Figures 28 through 30, involve 

“careless” errors.  Nevertheless, we, the educators, are responsible to model and guide our 

students to minimize them.  The latter two work samples (Figures 31 & 32) have major 

conceptual shortcomings.   

Ideally, the teacher will need to work with the students individually to identify their 

misconceptions, to construct the correct meaning of multiplication, and to connect their 

conceptual understanding to the standard multiplication algorithm.  This is a daunting task 

since as fifth graders, they have reinforced the incorrect reasoning for some years.  

Mathematics educators at all levels have to do better.  A learning gap, such as this, will 

have long-term, negative implications.   

In the next section, we introduce an effective and efficient way to teach and learn the 

multiplication algorithm.  By emphasizing the place value, this envisioned approach may 

curtail operational errors in multiplication. 

 

 

IV. ARTICULATING AN IDEAL STANDARD MULTIPLICATION 

ALGORITHM 

 

It would be a challenging task to conceptualize a standard multiplication algorithm—

the one that educators throughout the world would adopt.  However, at the school level, at 

the district level, at the state level, or even at the country level, educators should articulate 
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the algorithm explicitly and intentionally.  Below, we explore a more conceptually based 

approach to teaching the standard multiplication algorithm.  

In South Korea and the United States, children practice writing the basic Hangul 

characters (Figure 33) and the English alphabets (Figure 34) in blocks.  Similar to riding a 

bicycle with training wheels, the blocks provide the guidance to emulate, refine, and perfect 

the respective cultures’ written symbols.  In time, the teacher will wean off the use of the 

blocks. 

 

      

                                        

 

 

 

 

        Figure 33. Hangul characters in blocks   Figure 34. Alphabets in blocks                                      

 

To foster students’ understanding about numbers and their basic operations, we need to 

develop and reinforce the important concept of place value.  Despite researchers and 

educators’ efforts to document systematic ways to develop students’ place value concept 

(e.g., Fuson, 1986; Fuson & Briars, 1990; Kamii, 1989), there is not a “standard” or an 

“optimized” way to teach place value in multiplication.  Toward the envisioned standard 

multiplication algorithm, our first suggestion is to use the grids.  We shall see that the below 

Figure 35 work in Excel provides more than just neat work.  In detailed, comprehensive 

steps, we shall develop the algorithm by recalling the previously examined task:  Find the 

answer to 25 × 37.    

 

 

 

 

 

 

 

 

 

 

Figure 35. Standard multiplication algorithm work sample in grids 
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The figure includes the letters (A through D) to represent the columns and the numbers 

(1 through 8) to represent the rows.  Using the grids, we know precisely that column D 

represents the ones place values, column C represents the tens place values, and column B 

represents the hundreds place values.  

Next, in row 6, we see the familiar partial product, 175.  To find this value, we use the 

carried value, 30.  Identical to most of the student work samples, we place only 3 in C2 

since it is in the tens place.  Note that we decreased the size and lightened the shade of 3, 

as well as the other carried values, for contrast.  

In determining the partial product, 750, we place the carried value, 100, in B1.  First, 

unlike many student work samples, it is more appropriate to place 1 in column B than in 

column C since 1 actually represents one hundred.  Second, we write any carried values 

from 25 × 7 in row 2 and any carried values from 25 × 30 in row 1—hence, the carried 

values, 30 and 100, are in C2 and B1, respectively.  In short, rather than crossing out any 

carried values, like 3, students should be able to monitor their computations more 

efficiently and verify their overall work more accurately by using multiple rows. 

This standard multiplication algorithm also uses the × symbol for the multiplication 

operation and the + symbol to denote the addition of the partial products.  Moreover, a 

horizontal line segment separates the partial products to the product.  Finally, another 

unique feature of the algorithm entails the use of the double horizontal line segments in 

row 5.  Rather than encouraging students to place the “small 1” (the carried value of 100 

from 70 + 50) in the vicinity of 1 in 175 (for example, see Figure 22), we designate the 

space to document and align their work.  Similar to the other carried values in rows 1 and 

2, we do not need much gap between the segments—just enough to denote the carried 

values when adding the partial products. 

The below grid papers (Figure 36) have the sufficient space to show all work involving 

multiplications of up to two three-digit whole numbers.  We shall call this tool, the 

Multiplication Aid Template (MAT).   

 

 
 

Figure 36. The multiplication aid template (MAT) 
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Initially, students would use the left grid paper to accentuate the double horizontal line 

segments and then transition to the right grid paper to provide all detailed work.  Note that 

we can extend the MAT horizontally or vertically as needed. 

In Figure 37, using the MAT, we carried out the following steps to find the product of 

72 × 58.  

1. Starting from the rightmost column (G), copy 72, 58, and × above the 

double horizontal line segments in row 6.  Initially, the segments 

should be three cells long (E to G), and teachers need to model 

drawing these segments along the guidelines. 

2. Computing 72 × 8, clearly indicate the carried value, 10, in F3. 

3. Computing 72 × 50, clearly indicate the carried value, 100, in E2.  

4. Finally, indicate the sum of the partial products (576 and 3600) with 

the + symbol, extend the double horizontal line segments into one 

more cell (D) to include the carried value, 1000, in D6 and conclude 

the product is 4176 with another appropriately long horizontal line 

segment. 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Standard multiplication algorithm work sample using the MAT (a) 

 

Figure 38 involve more complex multiplication work samples with the MAT.  

Eventually, the teacher will wean off the use of the MAT entirely. 
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Figure 38. Standard multiplication algorithm work samples using the MAT (b) 

 

 

V. CONCLUDING REMARKS 

 

In recent decades, mathematics educators and researchers have focused more on 

conceptual understanding.  To be clear, we are not de-emphasizing the importance of 

conceptual understanding in this paper.  Rather, we underscore the concepts within the 

multiplication algorithm that has been regarded solely as a procedure.  

Multiplication algorithms should promote computational accuracy and efficiency.  The 

historical examples indicate the varied ways that people have pondered about this.  In the 

students’ work samples, one glaring shortcoming we highlight is the prevalent 

misplacements of the carried values.  We advocate using the Multiplication Aid Template 

(MAT) to indicate any carried value by aligning to its place value.  In fact, the MAT 

provides the needed template to align all numbers according to their place values.  A simple 

and yet useful tool, the MAT facilitates students to produce work based on their justifiable 

reasoning.  In short, employing the standard multiplication algorithm, we need to 

emphasize that procedural fluency involves much more than just simple recall of 

multiplication facts.  To make sense of the algorithm, students need to connect the 

procedures with their conceptual reasoning. 

Our examination of the school mathematics textbooks from the United States and South 

Korea, as well as the textbooks for preservice teachers, conveys that there is a lack of 

explicit instructions in teaching the standard multiplication algorithm.  Not only is there no 

broadly accepted “standard,” but it is left for the classroom teachers and university 

professors to devise their own algorithms.  This approach results in lack of clarity and 

consistency.  The MAT may be one way to overcome this issue.  

To have synergy for change, educators need time and care for dialogues.  This could be 

a focused professional development or a discussion in the hallway, but our profession 
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demands that we exchange our ideas to formulate improved ideals in how we teach and 

how our children learn mathematics.  It is our hope that this paper becomes an impetus for 

productive dialogues.  Notably, we suggest further study on teachers’ and students’ 

effective use of the MAT tool while teaching and learning the standard multiplication 

algorithm.   
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