References
- AISC (2016), Seismic provision for structural steel buildings, American Institute of Steel Construction, ANSI/AISC 341-16; Chicago; IL, USA.
- AISC (2002), Seismic provision for structural steel buildings, ANSI/AISC 341-02, American Institute of Steel Construction; Chicago, IL, USA.
- Akrami, V. and Erfani, S. (2015), "Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS)", Steel Compos. Struct., 18(3), 641-657. https://doi.org/10.12989/scs.2015.18.3.641.
- Al-Dafafea, T., Durif, S., Bouchaïr, A. and Fournely, E. (2019), "Experimental study of beams with stiffened large web openings", J. Constr. Steel Res., 154, 149-160. https://doi.org/10.1016/j.jcsr.2018.11.026.
- Altaee, M., Cunningham, L.S. and Gillie, M. (2019), "Practical application of CFRP strengthening to steel floor beams with web openings: a numerical investigation", J. Constr. Steel Res., 155, 395-408. https://doi.org/10.1016/j.jcsr.2019.01.006.
- Altaee, M.J., Cunningham, L.S. and Gillie, M. (2017), "Experimental investigation of CFRP-strengthened steel beams with web openings", J. Constr. Steel Res., 138, 750-760. https://doi.org/10.1016/j.jcsr. 2017.08.023.
- Arce, G. (2002), "Impact of higher strength steels on local buckling and overstrength of links in eccentrically braced frames", M.Sc. Dissertation; University of Texas at Austin, Texas, USA.
- Azad, S.K. and Topkaya, C. (2017), "A review of research on steel eccentrically braced frames", J. Constr. Steel Res., 128, 53-73. https://doi.org/10.1016/j.jcsr.2016.07.032.
- Berman, J.W. and Bruneau, M. (2008), "Tubular links for eccentrically braced frames. II: Experimental verification", J, Struct. Eng., 134(5), 702-712. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(702).
- Cheng, Q., Lian, M., Su, M. and Zhang, H. (2021). "Experimental and finite element study of high-strength steel framed-tube structures with replaceable shear links under cyclic loading", Structures, 26, 48-64. https://doi.org/10.1016/j.istruc.2020.11.006.
- Cheng, Q., Su, M., Lian, M., Zhang, H., Guan, B. and Gong, H. (2020), "Cyclic behavior of high-strength steel framed-tube structures with bolted replaceable shear links", Eng. Struct., 210, 110395. https://doi.org/10.1016/j.istruc.2020.11.006.
- Dolatshahi, K.M., Gharavi, A. and Mirghaderi, S.R. (2018), "Experimental investigation of slitted web steel moment resisting frame", J. Constr. Steel Res., 145, 438-448. https://doi.org/10.1016/j.jcsr.2018.03.004.
- Engelhardt, M. and Popov, E. (1989), "Behavior of long links in eccentrically braced frames", EERC report, 89-01; University of California, Berkeley, CA.
- Engelhardt, M.D. (1990), "Behavior of long links in eccentrically braced frames", Ph.D. Dissertation; University of California, Berkeley; California, USA.
- Erdal, F. (2016). "Effect of stiffeners on failure analyses of optimally designed perforated steel beams", Steel Compos. Struct., 22(1), 183-201. https://doi.org/10.12989/scs.2016.22.1.183.
- Erfani, S. and Akrami, V. (2016), "Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model", Steel Compos. Struct., 20(4), 913-930. https://doi.org10.12989/scs.2016.20.4.913.
- Fang, C., Ping, Y. and Chen, Y. (2019), "Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames", Earthq. Eng. Struct. D., 49(2), 155-174. https://doi.org/10.1002/eqe.3231.
- Guan, B., Su, M. and Lian, M. (2020), "Seismic behavior of combined steel framed-tube substructure with replaceable shear links", J. Constr. Steel Res., 167, 105968. https://doi.org/10.1016/j.jcsr.2020.105968.
- Goel, S.C. and Itani, A.M. (1994), "Seismic-resistant special truss-moment frames", J. Struct. Eng., 120(6), 1781-1797. https://doi.org/10.1061/(ASCE)0733-9445 (1994)120:6(1781).
- Hedayat, A.A. and Celikag, M. (2009), "Post-Northridge connection with modified beam end configuration to enhance strength and ductility", J. Constr. Steel Res., 65(7), 1413-1430. https://doi.org/10.1016/j.jcsr.2009.03.007.
- Hjelmstad, K.D. and Popov, E.P. (1984), "Characteristics of eccentrically braced frames", J. Struct. Eng., 110(2), 340-353. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:2(340).
- Kalehbasti, P.R. and Dolatshahi, K.M. (2018), "Two novel shear fuses in moment resisting frames", J. Constr. Steel Res., 144, 198-210. https://doi.org/10.1016/j.jcsr.2018.01.026.
- Kanvinde, A. and Deierlein, G. (2007), "Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue", J. Eng. Mech., 133(6), 701-712. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(701).
- Kasai, K. and Popov, E.P. (1986), "Cyclic web buckling control for shear link beams", J. Struct. Eng., 112(3), 505-523. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(505).
- Kaufmann, E., Metrovich, B. and Pense, A. (2001), "Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections", ATLSS Rep. No. 01-13; Lehigh Univ, Bethlehem, USA.
- Lian, M., Cheng, Q., Zhang, H. and Su, M. (2020), "Numerical study of the seismic behavior of steel frame-tube structures with bolted web-connected replaceable shear links", Steel Compos. Struct., 35(3), 305-325. https://doi.org/10.12989/scs.2020.35.3.305.
- Lian, M., Su, M. and Guo, Y. (2015), "Seismic performance of eccentrically braced frames with high strength steel combination", Steel Compos. Struct., 18(6), 1517-1539. http://dx.doi.org/10.12989/scs.2015.18.6.1517.
- Lian, M. and Su, M. (2017), "Experimental study and simplified analysis of EBF fabricated with high strength steel", J. Constr. Steel Res., 139, 6-17. https://doi.org/10.1016/j.jcsr.2017.09.013.
- Lian, M., Su, M. and Guo, Y. (2017), "Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel", Steel Compos. Struct., 24(4), 441-453. http://dx.doi.org/10.12989/scs.2017.24.4.441.
- Lian, M., Zhang, H., Cheng, Q. and Su, M. (2019), "Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links", Steel Compos. Struct., 30(4), 365-382. http://dx.doi.org/10.12989/scs.2017.24.4.441.
- Lian, M., and Su, M. (2017), "Seismic performance of high-strength steel fabricated eccentrically braced frame with vertical shear link", J. Constr. Steel Res., 137, 265282. https://doi.org/10.1016/j.jcsr.2017.06.022.
- Lian, M. and Su, M. (2018), "Seismic testing and numerical analysis of Y-shaped eccentrically braced frame made of high-strength steel", Struct. Des. Tall Spec. Build., 27(6), e1455. https://doi.org/10.1002/tal.1455.
- Lian, M. and Su, M. (2017), "Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel", Earthq. Struct., 12(5), 501-513. https://doi.org/10.1016/j.jcsr.2017.06.022.
- Liao, F., Wang, W. and Chen, Y. (2012), "Parameter calibrations and application of micromechanical fracture models of structural steels", Struct. Eng. Mech., 42(2), 153-174. https://doi.org/10.12989/sem.2012.42.2.153.
- Richards, P.W. (2004), "Cyclic stability and capacity design of steel eccentrically braced frames", Ph.D. Dissertation; University of California, San Diego.
- Richards, P.W. and Uang, C.M. (2005), "Testing protocol for short links in eccentrically braced frames", J. Struct. Eng., 132(8), 1183-1191. https://doi/abs/10.1061/(ASCE)0733-9445(2006)132:8(1183).
- Roeder, C.W. and Popov, E.P. (1977), "Inelastic behavior of eccentrically braced steel frames under cyclic loadings", EERC report, 89-01; NASA STI/Recon Technical Report N, vol. 78.
- Roeder, C.W. and Popov, E.P. (1978), "Cyclic shear yielding of wide-flange beams", J. Eng. Mech. Div., 104(4), 763-780. https://doi.org/10.1061/JMCEA3.0002378
- Simasathien, S., Jiansinlapadamrong, C. and Chao, S.H. (2017), "Seismic behavior of special truss moment frame with double hollow structural sections as chord members", Eng. Struct., 131, 14-27. https://doi.org/10.1016/j.engstruct.2016.10.001.
- SIMULIA (2014), Abaqus analysis user's manual, version 6.14, SIMULIA, The Dassault Systems, Realistic Simulation, USA.
- Okazaki, T. (2004), "Seismic performanc of link-to-column connections in steel eccentrically braced frames", Ph.D. Dissertation; Department of Civil Engineering, University of Texas at Austin, USA.
- Yao, Z., Wang, W., Fang, C. and Zhang, Z. (2020), "An experimental study on eccentrically braced beam-through steel frames with replaceable shear links", Eng. Struct., 206, 110185. https://doi.org/10.1016/j.engstruct.2020.110185.
- Zhang, H., Lian, M., Su, M. and Cheng, Q. (2020), "Lateral force distribution in the inelastic state for seismic design of high-strength steel framed-tube structures with shear links", Struct. Des. Tall Spec. Build., 29(17), e1801. https://doi.org/10.1002/tal.1801.
- Zhang, H., Lian, M. and Su, M. (2020), "Study on the seismic performance of high-strength steel framed-tube structures with replaceable shear links", J. Constr. Steel Res., 171, 106-131. https://doi.org/10.1016/j.jcsr.2020.106131.
- Zhang, H., Su, M., Lian, M., Cheng, Q., Guan, B. and Gong, H (2020), "Experimental and numerical study on the seismic behavior of high-strength steel framed-tube structures with end-plate-connected replaceable shear links", Eng. Struct., 223, 111172. https://doi.org/10.1016/j.engstruct.2020.111172.
- Zhou, H., Wang, Y., Shi, Y., Xiong, J. and Yang, L. (2013), "Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model", Int. J. Fatigue 48, 90-100. https://doi.org/10.1016/j.ijfatigue.2012.10.006.