참고문헌
- AS 1391 (2007), Methods for tensile testing of metals, Standards Association of Australia, Sydney, Australia.
- AS 4100 (2016), Steel structures, Standards Australia, Sydney, Australia.
- AS/NZS 2327 (2017), Composite Structures-Composite steel-concrete construction in buildings, Standards Australia, Sydney, Australia.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Constr. Steel Res., 107, 94-110. https://doi.org/10.1016/j.jcsr.2015.01.005.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.
- Bradford Mark, A. and Gilbert, R.I. (1990), "Time-Dependent Analysis and Design of Composite Columns", J. Struct. Eng., 116(12), 3338-3357. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3338).
- Bridge, R.Q. (1979), "Composite columns under sustained load", J. Struct. Div., 105(ST3).
- Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Gilbert, R.I. and Ranzi, G. (2010), Time-dependent Behaviour of Concrete Structures, Spon Press, London, UK.
- Han, L.H. and Yang, Y.F. (2003), "Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads", Thin-Wall. Struct.. 41(9), 849-870. https://doi.org/10.1016/S0263-8231(03)00029-6.
- Han, L.H., Hou, C. and Wang, Q.L. (2012), "Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: Experiments", J. Constr. Steel Res., 71, 11-25. https://doi.org/10.1016/j.jcsr.2011.11.012,
- Han, L.H., Tao, Z. and Liu, W. (2004), "Effects of Sustained Load on Concrete-Filled Hollow Structural Steel Columns", J. Struct. Eng., 130(9), 1392-1404. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1392).
- Huang, Z., Li, D., Uy, B., Thai, H.T. and Hou, C. (2019), "Local and post-local buckling of fabricated high-strength steel and composite columns", J. Constr. Steel Res., 154, 235-249. https://doi.org/10.1016/j.jcsr.2018.12.004.
- Ichinose, L.H., Watanabe, E. and Nakai, H. (2001), "An experimental study on creep of concrete filled steel pipes", J. Constr. Steel Res., 57(4), 453-466. https://doi.org/10.1016/S0143-974X(00)00021-3.
- Kim, C.S., Park, H.G., Choi, I.R. and Chung, K.S. (2017), "Effect of Sustained Load on Ultimate Strength of High-Strength Composite Columns Using 800-MPa Steel and 100-MPa Concrete", J. Struct. Eng., 143(3), 04016189. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001676.
- Kwon, S.H., Kim, T.H., Kim, Y.Y. and Kim, J.K. (2007), "Long-term behaviour of square concrete-filled steel tubular columns under axial service loads", Mag. Concrete Res., 59(1), 53-68. https://doi.org/10.1680/macr.2007.59.1.53.
- Kwon, S.H., Kim, Y.Y. and Kim, J.K. (2005), "Long-term behaviour under axial service loads of circular columns made from concrete filled steel tubes", Mag. Concrete Res., 57(2), 87-99. https://doi.org/10.1680/macr.2005.57.2.87.
- Lai, B., Liew, J. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel and Composite Structures. 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.
- Li, D., Huang, Z., Uy, B., Thai, H.T. and Hou, C. (2019), "Slenderness limits for fabricated S960 ultra-high-strength steel and composite columns", J. Constr. Steel Res., 159, 109-121. https://doi.org/10.1016/j.jcsr.2019.04.025.
- Liang, Q.Q., Uy, B. and Richard Liew, J.Y. (2006), "Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects", J. Constr. Steel Res., 62(6), 581-591. https://doi.org/10.1016/j.jcsr.2005.09.007.
- Liew, J.Y.R. and Xiong, D.X. (2012), "Ultra-High Strength Concrete Filled Composite Columns for Multi-Storey Building Construction", Adv. Struct. Eng., 15(9), 1487-1503. https://doi.org/10.1260/1369-4332.15.9.1487.
- Liu, S.W., Chan, T.M., Chan, S.L. and So, D.K.L. (2017), "Direct analysis of high-strength concrete-filled-tubular columns with circular & octagonal sections", J. Constr. Steel Res., 129, 301-314. https://doi.org/10.1016/j.jcsr.2016.11.023.
- Ma, Y.S. and Wang, Y.F. (2012), "Creep of high strength concrete filled steel tube columns", Thin-Wall. Structures. 53, 91-98. https://doi.org/10.1016/j.tws.2011.12.012.
- Morino, S., Kswaguchi, J. and Cao, Z.S. (1996), "Creep behavior of concrete-filled steel tubular members", In Composite Construction in Steel and Concrete III, (pp. 514-525). ASCE.
- Persson, B. (2001), "A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete", Cement Concrete Res., 31(2), 193-198. https://doi.org/10.1016/S0008-8846(00)00497-X.
- Remennikov, A.M. and Uy, B. (2014), "Explosive testing and modelling of square tubular steel columns for near-field detonations", J. Constr. Steel Res., 101, 290-303. https://doi.org/10.1016/j.jcsr.2014.05.027.
- Tao, Z., Han, L.H., Uy, B. and Chen, X. (2011), "Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns", J. Constr. Steel Res., 67(3), 484-496. https://doi.org/10.1016/j.jcsr.2010.09.006.
- Terrey, P.J., Bradford, M.A. and Gilbert, R.I. (1994), "Creep and shrinkage of concrete in concrete-filled circular steel tubes", Proceedings of the 6th Inter. Symposium on Tubular Structures, Melbourne, Australia (pp. 293-298), December.
- Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Constr. Steel Res., 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014.
- Uy, B. (2001), "Axial compressive strength of short steel and composite columns fabricated with high stength steel plate", Steel Compos. Struct., 1(2), 171-185. https://doi.org/10.12989/scs.2001.1.2.171.
- Uy, B. (2001), "Static long-term effects in short concrete-filled steel box columns under sustained loading", ACI Struct. J., 98(1), 96-104. https://doi.org/10.14359/10151.
- Uy, B. and Das, S. (1997), "Time effects in concrete-filled steel box columns in tall buildings", Struct. Des. Tall Build., 6(1), 1-22. https://doi.org/10.1002/(SICI)1099-1794(199703)6:1%3C1::AID-TAL78%3E3.0.CO;2-K.
- Wang, Y., Geng, Y., Ranzi, G. and Zhang, S. (2011), "Time-dependent behaviour of expansive concrete-filled steel tubular columns", J. Constr. Steel Re., 67(3), 471-483. https://doi.org/10.1016/j.jcsr.2010.09.007.
- Wang, Y.F., Han, B. and Zhang, D.J. (2008), "Advances in creep of concrete filled steel tube members and structures", Proceeding of the 8th Concreep Conference, Ise-Shima, Japan, October, pp. 595-600.
- Yang, M.G., Cai, C.S. and Chen, Y. (2015), "Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge", Steel Compos. Struct., 19(1), 111-129. https://doi.org/10.12989/scs.2015.19.1.111.
- Zhang, D.J., Ma, Y.S. and Wang, Y. (2015), "Compressive behavior of concrete filled steel tubular columns subjected to long-term loading", Thin-Wall. Struct., 89, 205-211. https://doi.org/10.1016/j.tws.2014.12.020.