Synthesis of Asymmetric Pyrazoline Derivatives from Phenylthiophenechalcones; DFT Mechanistic Study

Asmaa Aboelnaga, Eman Mansour*, Hoda. A. Ahmed†, and Mohamed Hagar‡,*

Department of Chemistry, Faculty of Women for Arts, Science and Education, Egypt, Ain Shams University, Cairo, P.O. Box 11566, Egypt. *E-mail: emanmansour211@yahoo.com

†Faculty of Science, Department of Chemistry, Cairo University, Cairo 12613, Egypt.
‡Faculty of Science, Chemistry Department, Alexandria University, Alexandria 21321, Egypt.

(Received December 21, 2020; Accepted January 18, 2021)

ABSTRACT. New phenylthiophenechalcones, 1-(biphenyl-4-yl)-3-(5-phenylthiophen-2-yl)prop-2-en-1-one (3a) and 3-(5-phenylthiophen-2-yl)-1-(4-(piperidin-1-yl) phenyl) prop-2-en-1-one (3b) were synthesized, next, their treatment with thiosemicarbazide in ethanol afforded their pyrazoline derivatives (4a) and (4b), respectively. The molecular structures of the synthesized compounds were confirmed via elemental analysis, FT-IR, 1H, 13C NMR and mass spectroscopy. The geometrical elucidation of four suggested conformers has been studied for these compounds. DFT calculations have been performed to study the stability and the structural parameters of the predicted conformers and revealed that orientation of the biphenyl and the phenylthiophene moieties affect the stability of the estimated conformers of the synthesized chalcones and pyrazoline. Moreover, two reaction mechanisms have been proposed to illustrate the reaction products and the DFT calculations have been used to confirm the reaction mechanism of the pyrazoline compounds.

Key words: Phenylthiophenechalcone, Conformers, Carbothioamide, Pyrazole, DFT, Mechanistic study

INTRODUCTION

Over the past decades, research has been focused on α,β-unsaturated ketone which have numerous therapeutic effects, such as, cytotoxicity,1-3 antimitotic,4 antimutagenic,5 antibacterial, antiviral,6 anti-inflammatory,7,8 and hepatoprotective activities.9 Some researchers studied the properties of pyrazolines and pyrazole derivatives forming a cyclic moiety of hydrazine and found high activity.10,11 Moreover chalcones, are considered as a key to flavones in flavonoid biosynthesis that is because, in open chain flavonoids two aromatic rings are joined by three carbons with α-β unsaturated system.12 Also, implementation a pyrazole ring in the chalcones increases the cytotoxic activity towards a series of human cancer cell lines.13 In general, acid- or base-catalyzed Claisen-Schmidt condensation of aldehyde and ketone, followed by dehydration is commonly used to synthesize chalcones.14 In the aromatic chalcones which contain keto-ethenyl group (-CO-CH=CH) may exist either in cis or trans form.15 Delocalization of π electrons in the conjugated double bond system reduces its electron density and makes it an intermediate for the synthesis of distinct heterocycles. On the other hand, density functional theory (DFT) was known as an effective tool for providing theoretical guidance into chemical reactivity, and it can help in the expectation of the reaction mechanism as it generate mechanical quantity descriptors used in quantitative structure-activity relationship.16-28

Such findings have led us to synthesize a novel of phenylthiophene chalcones and its corresponding pyrazoline derivatives and to focus on the reaction mechanism depending on DFT calculations. DFT calculations will be discussed to foresee the molecular confirmations23-25 as well as their thermal parameters. In addition, these calculations will be used to explain mechanistic steps for the formations of pyrazoline derivatives. Density functional theory (DFT) is recognized as an important tool to provide theoretical response to chemical reactivity, which affects the biological properties of many drugs, on the other hand, DFT has been shown to illustrate valuable descriptions of molecular structure, mechanistic study, vibrational frequencies, and the energetics of chemical reactions to investigate the electronic properties of many chalcones. Many DFT studies routinely provide chemical reactivity, but no such studies have been performed on thiophene chalcones.27,28

EXPERIMENTAL

Computational Method

Gaussian 09 software was used for DFT calculations for the studied compounds.29 DFT methods using B3LYP 6-
31G (d, p) basis set was selected for the calculations. The geometries were optimized by minimizing the energies with respect to all geometrical parameters without imposing any molecular symmetry constraints. The structures of the optimized geometries had been drawn with Gauss View.30 Also, calculations of frequencies were carried out by the same level of theory. The frequency calculations showed that all structures were stationary points in the geometry optimization method with none imaginary frequencies.

Materials and Instrumentations

All melting points were measured using Gallenkamp melting point device. Fourier Infrared (Ft-IR) Spectra were recorded using Perkin Elmer FT-IR Spectrum Nicolet IS10. Nuclear Magnetic Resonance Spectra were recorded on a Bruker NMR spectrometer, 1H spectrum was run at 300 MHz in deuterated DMSO as a solvent, the chemical shift (\(\delta\)) was reported in ppm and the coupling constant (\(J\)) values in Hertz and the 13C NMR spectrum was run at 75 MHz in deuterated DMSO. The reaction courses were monitored by thin layer chromatography (TLC) on silica gel plates and spots were visualized by UV lamp at 250-380 nm. All the chemicals were purchased from Sigma–Aldrich.

Results and Discussion

Synthesis of 3-(5-phenylthiophen-2-yl)prop-2-en-1-ones 3(a, b)

To a solution of 5-phenylthiophene-2-carbaldehyde (1) (0.01 mol, 1.9 mL) and 1-(biphenyl-3-yl) ethanone (2a) or 1-(4-(piperidin-1-yl) phenyl) ethanone (2b) (0.01 mol, 2 mL) in absolute ethanol (40 mL), potassium hydroxide solution (3 \(M\)), respectively.

3-(5-phenylthiophen-2-yl)-5-(4-(piperidin-1-yl)phenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide 4(a, b)

To a solution of KOH (0.025 mol) and chalcone 3 (a, b) (10 mmol, 3.7 g) in ethanol (50 ml), thiosemicarbazone was added portion-wise. The mixture was stirred for 2 h. The solid product was collected by filtration, washed with water, dried and recrystallized from EtOH/DMF to give pyrazole derivatives 4 (a, b).

5-(biphenyl-4-yl)-3-(5-phenylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide 4(a). Yellow crystals (yield 70\%), m.p. 210-212 °C; IR (KBr, \(\nu\) cm\(^{-1}\)) 3241 & 3134 (NH), 1584 (C=O) and 1529 (C=S); 1H NMR (DMSO-d\(_6\)) \(\delta\) ppm: 7.33-7.36 (m, 1H, H of pyrazole), 8.4-8.5 (m, 1H, H of pyrazole), 6.2-6.4 (m, 1H, H of pyrazole), 7.02-7.90 (m, 14H, ArH), 7.94-7.96 (d, 1H, J = 7.6 Hz, thiophene H), 8.01-8.03 (d, 1H, J = 10 Hz, thiophene H), 8.5 (s, 2H, NH\(_2\)) m/z: 438.52 (M-1, 4.62%); 13C NMR (75 MHz, DMSO-d\(_6\)) \(\delta\) ppm: 176.63 (C=O), 160.87, 155.43, 143.24, 138.55, 137.87 (2C), 129.67 (2C), 127.98 (2C), 126.38 (2C), 125.81 (2C), 125.12 (2C), 124.82 (2C), 122.99 (2C), 119.40 (2C), 118.02 (2C), 117.55 (1H, H of pyrazole), 112.52 (2C), 103.53 (2C), 72.44 (2H, H of pyrazole).

5-(5-phenylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide 4(b). Brown crystals, (yield 87\%), m.p. 160-162 °C; IR (KBr, \(\nu\) cm\(^{-1}\)) 3376 & 3266 (NH), 1532 (C=N) and 1242 (C=S); 1H NMR (DMSO-d\(_6\)) \(\delta\) ppm: 7.18-7.21 (m, 1H, H of pyrazole), 8.41-8.43 (m, 1H, H of pyrazole), 6.2-6.4 (m, 1H, H of pyrazole), 7.02-7.90 (m, 14H, ArH), 7.94-7.96 (d, 1H, J = 7.6 Hz, thiophene H), 8.01-8.03 (d, 1H, J = 10 Hz, thiophene H), 8.5 (s, 2H, NH\(_2\)); m/z: 446.2 (M\(^+\) , 1.02%); Anal. Caled for C\(_{26}\)H\(_22\)N\(_2\)S (446.2): C, 71.04; H, 4.82; N, 9.56. Found: C, 71.14; H, 4.83; N, 9.50.

RESULTS AND DISCUSSION

Two new chalcones were synthesized by condensing 5-
phenylthiophene-2-carbaldehyde (1) with 1-(biphenyl-3-yl)ethanone (2a) or 1-(4-(piperidin-1-yl) phenyl)ethanone (2b) in ice bath in absolute ethanol (40 mL), potassium hydroxide solution (3 ml, 40%) was added portion-wise. The mixture was stirred for 2 h. The solid product was collected by filtration, washed with water, dried and finally crystallized from ethanol to give prop-2-en-1-ones 3a and 3b in pure state and high yield. The structure of the new synthesized chalcones was confirmed by spectroscopic data as well as elemental analysis. FT-IR data revealed that the absorption bands in the region 1630-1677 cm$^{-1}$ corresponding to the conjugated carbonyl system of chalcones. The 1H NMR spectra of 3a, 3b exhibit the presence of doublet signals at $\delta = 7.29-7.97$ ppm due to the olefinic hydrogen.

Four conformers have been suggested as products of Aldol condensation reactions, four isomers for 3a, Scheme 2, and two for 3b, Scheme 3. DFT calculations have been performed to study the stability of the estimated conformers [3a (i-iv), 3b (i, ii)]. The DFT calculations were carried out in gas phase with B3LYP 6-311G basis set. The absence of the imaginary frequency for all optimized structures is an evidence of their stability. The thermal parameters have been summarized in Table 1. The results of the theoretical calculations for the four conformers 3ai-iv revealed that the conformer 3aii is the most stable isomer and 3bii for the other derivative. However, the energy difference between the most stable isomer and the least stable one is 2.03 Kcalmol$^{-1}$ for 3a and 157.71 Kcalmol$^{-1}$ for 3b. The lower enthalpy value (ΔH) between isomers of 3a is an evidence of their presence in equilibrium. Both compounds

Scheme 1. Synthesis of chalcones 3 (a, b).

Scheme 2. Structures of conformers 3a.

Scheme 3. Structures of conformers 3b.
showed the same geometrical structure of the stable isomer, \textit{syn} geometrical configuration of the C=O with aryl group and anti-configuration of the thiophene ring with the \(\beta \)-unsaturated bond. These results could be explained in terms of the formation of the proper geometrical structure for the maximum conjugation. Fig. 1 (in Supplementary Material) shows the geometrical structures of the most stable conformers of \(3\text{aii} \) and \(3\text{bii} \). The figure emphasizes the twisting of the phenyl ring of the biphenyl part as well as the phenyl ring attached to the thiophene, this could illustrate the non co planarity of the investigated chalcones.

Compound \(3\text{a} \) and \(3\text{b} \) were treated with thiosemicarbazide in presence of NaOH in refluxing ethanol to afford thioamide derivatives \(4\text{a} \) and \(4\text{b} \), Scheme 4. The IR spectra of the latter compounds showed absorption bands at 1584-1532 cm\(^{-1}\) corresponding to C=N group and at 1242-1259 cm\(^{-1}\) stretching band of C=S group, and the absorption band of NH\(_2\) group at 3376-3134 cm\(^{-1}\). Its \(^1\)H-NMR spectrum showed the signals of H\(_a\), H\(_b\), and H\(_c\) of pyrazole ring as multiplet in the region of 3.26-3.40, 3.95-4.8 and 5.88-6.4 ppm, respectively, and the weak signals at 8.5-8.6 due to NH\(_2\) protons.

The reaction mechanism of the addition of thiosemicarbazide to chalcones is studied for \(3\text{a} \) as representative example. The mechanism could involve the intermediate formation of thiosemicarbazone and subsequent nucleophilic addition of N–H to the \(\beta \)-unsaturated carbon to give the pyrazole ring; condensation followed by Michael type reaction mechanism, Scheme 5.\(^{31}\) Moreover, there is another reaction mechanism that could compete, Michael type reaction on the \(\beta \)-unsaturated carbon atom followed by nucleophilic attack on the carbonyl group, Scheme 6.

It has been reported by Hawaiz \textit{et al.}\(^{32}\) that the preparation of thiocarbamoyl pyrazoline derivatives from substituted chalcones and thiosemicarbazide were achieved in high yields on the basis of the condensation then Michael type addition reaction mechanism. The DFT calculations have been used to confirm the reaction mechanism. The atom polar tensor (APT) charges are calculated at the same
method with the same base set, Table 2, Fig. 2 (in Supplementary Material). According to the calculated APT charges, the most significant variations of the APT charges at the different atomic sites of the studied chalcones are due to change in the position and the type of the attached ring of the ketone. The highest positively charged centers is the C1, carbonyl carbon, of compounds 3aii (1.542513) and 3bii (1.694828). Consequently, the nucleophilic attack of the NH2 of the thiosemicarbazide might be started on the carbon of the carbonyl group of the highest positive charge rather than the β-unsaturated carbon atom (C4), then by the elimination of one water molecules affords the thiosemicarbazone. Successfully, a second nucleophilic addition of the NH group to the β-unsaturated carbon atom (C4) gives the corresponding pyrazole derivatives 4aii and 4bii. This mechanism is a good evidence of the condensation then Michael type mechanism, Scheme 5, rather than Michael type then the condensation mechanism, Scheme 6.

The reaction of chalcones with thiol compounds is reported to give two diastereomeric adducts.33 Stereochemical investigation of thiol addition reaction of hydroxychalcone and its bis-Mannich derivative was studied. In these reactions, the nucleophilic addition to the beta-carbon atom of the enone moiety generates a new chiral centre. Due to the chiral centres, formation of the enantiomeric forms of the new chiral centre results in formation of two diastereomeric adducts. Accordingly, the observed diastereoselectivity is reflecting enantioselectivity of the addition reactions. A series of bi- and tricyclic 4,5-dihydropyrazoles were reported to afford two diastereoisomers. The reaction of chalcones with semicarbazide gave only one diastereoisomer.10,32 In our present investigation, many isomers (conformational as well as stereo-isomers) could be expected as products of this reaction. Compound 4a is expected to be in four major conformers 4a (i-iv) Scheme 7, however, 4b is expected to be in only two, 4b (i, ii) Scheme 8. Since the reaction created a chiral centre, each conformer could exist in two stereoisomers R and S. The thermal parameters tabulated in Table 3 were calculated by DFT method at B3LYP 6-31G (d, p) basis set. The S and R configurations of 4a have been calculated, and only the S isomer of 4b was calculated. The results of the DFT calculations of the thermal parameters revealed that the pyrazoles 4aiiv and 4bii are the least in energy. Regardless of the position of the ring A or its saturation issue, the same geometrical isomer was obtained for both compounds 4aiiv and 4bii. This result might be explained in terms of the steric and strain effects, Fig. 3 (in Supplementary Material). Moreover, the absolute configuration of these diastereoisomers has insignificant effect on the stability. However, the S isomer is more stable than the R one by 7.7 Kcalmol⁻¹. This DFT result is confirmed by the reported X-ray structure of its analogues pyrazoles [10], as single crystal X-ray analysis showed the absolute (S)-configuration of the products of these reactions.
Table S4 (in Supplementary Material) showed selected structure parameters of optimized geometry of stable S isomers of 4aiv and 4bii calculated by B3LYP/6-311G method. The bond length of C1-C2 is also affected by the conjugation of the phenyl ring B to have double bond characterized that decreases the bond length to be in the range of 1.46 Å. Neither the attachment of the saturated piperidine ring nor its position has a significant effect on the bond length. Moreover, there is insignificant effect of the absolute configuration of the chiral center. Additionally, C2-N6 has a single bond character, its bond length is in between 1.30 Å instead of 1.25 Å for an unconjugated C=N bond. The long bond lengths of C10-C12 and C22-C26 (1.46 Å) is an evidence of the twisting of the phenyl rings A and E of compounds 4aiv R and 4aiv S. The co-planarity of the aromatic π-bonds decreases the C-C bond length to be lower than 1.4 Å. Another confirmation of these results is achieved by calculations of bond angles for the studied compounds. They showed deviation from the normal trigonal planer for all the unsaturated groups which confirm some single bond character for those groups. Moreover, the dihedral angles showed the degree of twisting of the rings A and E with respect to the conjugated rings B and D, respectively.

On the other hand, a detailed study of the spectrophotometric absorption of the most stable compounds has been achieved either experimentally or theoretically. The experimental UV-Vis spectrum of the most stable conformers of the prepared compounds 3a, b and 4a, b in alcoholic solutions was recorded in the region of 200-550 nm, Fig. S4 (in Supplementary Material). Moreover, energy levels of the frontier molecular orbitals (FMOs), the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were calculated by the same method at the same set. The calculated energy gap between HOMO and LUMO orbitals was tabulated in Table S5 (in Supplementary Material). The maximum absorbance wavelengths (\(\lambda_{\text{max}} \)) were also calculated and compared with the experimentally measured one. The experimental and the
CONCLUSIONS

Aldol condensation of 5-phenylthiophene-2-carbaldehyde (1) with 1-(biphenyl-3-y1)ethanone (2a) or 1-(4-(piperidin-1-y1)phenyl)ethanone (2b) in ice bath using basic condition produced in pure state and high yield of prop-2-en-1-ones 3a and 3b, which then reacted with thiosemicarbazide to form its pyrazoline derivatives (4a) and (4b). The structures of the newly synthesized compounds were confirmed by spectroscopic data as well as elemental analysis. The DFT calculations revealed that the most stable conformers are (3aii) and (3bii), also confirmed the reaction mechanism. The stability and the structural parameters of the predicted conformers revealed that orientation of the biphenyl and the phenylthiophene moieties affect the stability of the estimated conformers of the synthesized chalcones and pyrazoline.

Supplementary Materials. The following are available online, Fig. 1: The geometrical structure of 3aii and 3bii, Fig. 2: APT charges of 3aii and 3bii, Fig. 3: The geometrical structures of the most stable conformers of pyrazole derivative 4a, b, Fig. 4: Experimental Ultraviolet visible spectrum of the compounds 3a, b and 4a, b, Fig. 5: 1H NMR of 1-(biphenyl-4-y1)-3-(5-phenylthiophen-2-y1) prop-2-en-1-one (3a), Fig. 6: 1H NMR of 3- (5-phenylthiophen-2-y1) -1-(4-(piperidin-1-y1) phenyl) prop-2-en-1-one (3b), Fig. 7: 1H NMR of 5- (biphenyl-4-y1)-3- (5-phenylthiophen-2-y1)-4,5-dihydro-1H-pyrazole-1-carbothioamide (4a), Fig. 8: 1H NMR of 3-(5-phenylthiophen-2-y1)-5-(4-(piperidin-1-y1) phenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (4b), Fig. 9: 13C NMR of 3-(5-phenylthiophen-2-y1)-1-(4-(piperidin-1-y1) phenyl) prop-2-en-1-one (3b), Fig. 10: 13C NMR of 5-(biphenyl-4-y1)-3-(5-phenylthiophen-2-y1)-4,5-dihydro-1H-pyrazole-1-carbothioamide (4a); Table 1: Thermal parameters (Hartree/Particle) of 3a (i-iv) and 3b (i, ii), Table 2: APT charges of 3aii and 3bii, Thermal parameters (Hartree/Particle) of R and S of 4ai(i-iv) and S of 4b (i, ii), Table 4: Selected structure parameters of optimized geometry of stable S isomers of 4aiiv and 4bii calculated by DFT B3LYP/6-311G method.

Funding. The authors extend their appreciation to the Korean Chemical Society for funding this work.

Conflicts of interest. Authors declare “no conflicts of interest”.

Author Contributions. Data curation, Eman Mansour, Asmaa Aboelnaga, Huda Ahmed, and Mohamed Hagar; Formal analysis, Eman Mansour, Asmaa Aboelnaga, Huda Ahmed, and Mohamed Hagar; Funding acquisition, Eman Mansour, and Mohamed Hagar; Investigation, Eman Mansour, Asmaa Aboelnaga, Huda Ahmed and Mohamed Hagar; Methodology, Eman Mansour, Asmaa Aboelnaga, and Mohamed Hagar; Project administration, Eman Mansour and Mohamed Hagar; Resources, Eman Mansour, Huda Ahmed and Mohamed Hagar; Software, Mohamed Haggar; Supervision, Mohamed Haggar; Writing – original draft, Eman Mansour, Asmaa Aboelnaga and Mohamed Haggar; Writing – review & editing, Eman Mansour and Asmaa Aboelnaga.

Acknowledgments. Publication cost of this paper was supported by the Korean Chemical Society.

REFERENCES

