DOI QR코드

DOI QR Code

A Study on the Smart Filter System for External Environment Recognition

외부환경 인식용 스마트 필터 시스템에 대한 연구

  • Received : 2021.01.29
  • Accepted : 2021.04.17
  • Published : 2021.04.30

Abstract

This paper is a study on the implementation of smart filter system that recognizes the external environment and automatically removes pollutants according to pollution level. Recently, the occurrence of various pollutants in indoor and outdoor space has adversely affected the human body. Especially, various fine dust generated in the atmosphere becomes worse in closed residential space or office space. Although air pollution can be temporary lowered through ventilation, it is difficult to respond to fine dust changes in real time, and such problems become serious in the space where many people reside, such as at home or industry. Therefore, it is necessary to measure the pollution level of fine dust inside the residential space in real time and to reduce the pollution of indoor ventilation through automatic ventilation with the outside. To improve these problems, this paper proposes the implementation of smart filter system for external environment recognition. The structure of smart filter system that automatically measures air quality inside and outside, removes pollutants, implements the function, and confirms the operability by manufacturing prototypes. Finally, the effectiveness of the smart filter system for solving fine dust problems was examined.

본 논문은 외부환경을 인식하고 오염도에 따라 자동으로 오염물질을 제거하는, 스마트 필터 시스템의 구현에 관한 연구이다. 최근 실내외 공간에서 다양한 오염물질의 발생은 인체에 악영향을 미치고 있으며 특히 대기 중에서 발생되는 다양한 미세먼지는 밀폐된 주거 공간이나 사무공간에서 심해진다. 환기 등을 통해 일시적인 공기질 오염도를 낮출 수는 있으나 미세먼지 변화를 실시간적으로 대응하는 것이 어려워 가정이나 산업체와 같이 다수의 인력이 상주하는 공간에서 이와 같은 문제점은 심각해진다. 따라서 거주 공간의 내부의 미세먼지 농도를 실시간적으로 측정하고, 외부와의 자동 환기를 통해, 실내 환기의 오염농도를 저감시킬 필요성이 있다. 이와 같은 문제점을 개선하기 위하여, 본 논문에서는 외부환경 인식용 스마트 필터 시스템에 대한 구현을 제안하고자 한다. 실내외부의 공기질을 자동으로 측정하고, 오염물질을 제거하는 스마트 필터 시스템에 대한 구조를 설계하고 기능을 구현하였으며, 시제품을 제작하여 동작성을 확인하였다. 최종적으로는 스마트 필터 시스템의 미세먼지 문제 해결에 대한 효용성을 검토하였다.

Keywords

References

  1. C. Song, "Current status of fine dust and countermeasures," The Magazine of the Korean Society of Hazard Mitigation, vol. 66, no. 1, 2016, pp. 44-49.
  2. K. Yoon and S. Baek, "A Study on the Structural System and Implementation of Cantilever Actuator for Removal of Pollutants," J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 4, 2019, pp. 651-656. https://doi.org/10.13067/JKIECS.2019.14.4.651
  3. S. Kim, "Regulations and effects of fine dust," Air cleaning technology, vol. 15, no. 1, 2002, pp. 19-28.
  4. T. Jo and T, Kim, "Patent technologies to reduce fine dust", J. of the Korea Institute for Structural Maintenance and Inspection, vol. 24, no. 2, 2020, pp. 9-14. https://doi.org/10.11112/JKSMI.2020.24.2.9
  5. Y. Jo and M. Jang, "Suggestion and Verification of Architecture for Collecting Fine Dust using Drone," J. of the Korea Institute of Electronic Communication Science, vol. 15, no. 1, 2020, pp. 125-132. https://doi.org/10.13067/JKIECS.2020.15.1.125
  6. T. Mizuno, M. Kawai, F. Tsuchiya, M. Kosugi, and H. Yamada, "An examination for increasing the motor constant of a cylindrical moving magnet -type linear actuator," IEEE Trans. Magn., vol. 41, no. 10, 2005, pp. 3976-3978. https://doi.org/10.1109/TMAG.2005.855160
  7. K. Guo, S. Fang, H. Yang, H. Lin, and S.L. Ho, "A Novel Linear-Rotary Permanent Magnet Actuator Using Interlaced Poles," IEEE Trans. Magn., vol. 51, no. 11, 2015, pp. 376-383.
  8. K. Yoon and B. Kwon, "Optimal Design of a New Interior Permanent Magnet Model Using a Flared-Shape Arrangement of Ferrite Magnets," IEEE Trans. Magn., vol. 52, no. 7, 2016, p. 8106504.
  9. K. Yoon and S. Baek, "Performance Improvement of Concentrated-flux Type IPM Motors with Flared-shape Magnet Arrangement," Appl. Sci., vol. 10, no. 17, 2020, pp. 1-15.
  10. B. Tomczuk and M. Sobol, "A Field-network Model of a Linear Oscillating Motor and its Dynamic Characteristics," IEEE Trans. Magn., vol. 41, no. 8, 2005, pp. 2362-2367. https://doi.org/10.1109/TMAG.2005.852941
  11. M. Utsuno, M. Takai, T. Mizuno, and H. Yamada, "Comparison of the Losses of a moving-magnet Type Linear Oscillatory Actuator under Two Driving Methods," IEEE Trans. Magn., vol. 38, no. 5, 2002, pp. 3300-3303. https://doi.org/10.1109/TMAG.2002.802291
  12. Hanyang university, energy conversion lab., Electrical machines and DC motor control., hongreung publishing company, 2011.
  13. G. Kim, J. Jnag, and M. Park, Complete conquest of Arduino., bogdoo publishing company, 2014.