References
- Guller I, Russell AP. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Phsiol 2010;588:4075-87. https://doi.org/10.1113/jphysiol.2010.194175
- Luo W, Nie Q, Zhang X. MicroRNAs involved in skeletal muscle differentiation. J Genet Genom 2013;40:107-16. https://doi.org/10.1016/j.jgg.2013.02.002
- Rhoads RP, Fernyhough ME, Liu X, et al. Extrinsic regulation of domestic animal-derived myogenic satellite cells II. Domest Anim Endocrinol 2009;36:111-26. https://doi.org/10.1016/j.domaniend.2008.12.005
- Blau HM, Webster C. Isolation and characterization of human muscle cells. Proc Natl Acad Sci USA 1981;78:5623-7. https://doi.org/10.1073/pnas.78.9.5623
- Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 1995;31:773-9. https://doi.org/10.1007/BF02634119
- Dodson MV, Martin EL, Brannon MA, Mathison BA, McFarland DC. Optimization of bovine satellite cell-derived myotube formation in vitro. Tissue Cell 1987;19:159-66. https://doi.org/10.1016/0040-8166(87)90001-2
- Wu H, Ren Y, Li S, et al. In vitro culture and induced differentiation of sheep skeletal muscle satellite cells. Cell Biol Int 2012;36:579-87. https://doi.org/10.1042/CBI20110487
- Bennett VD, Cowles E, Husic HD, Suelter CH. Muscle cell cultures from chicken breast muscle have increased specific activities of creatine kinase when incubated at 41℃ compared with 37℃. Exp Cell Res 1986;164:63-70. https://doi.org/10.1016/0014-4827(86)90454-4
- Liu H, Li L, Chen X, et al. Characterization of in vitro cultured myoblasts isolated from duck (Anas platyrhynchos) embryo. Cytotechnology 2011;63:399-406. https://doi.org/10.1007/s10616-011-9356-7
- Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 1996;10:1173-83. https://doi.org/10.1101/gad.10.10.1173
- Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 2007;19:628-33. https://doi.org/10.1016/j.ceb.2007.09.012
- Cserjesi P, Olson EN. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol 1991;11:4854-62. https://doi.org/10.1128/MCB.11.10.4854
- Chen JF, Mandel EM, Thomson JM, et al. The role of micro-RNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33. https://doi.org/10.1038/ng1725
- Peterson JM, Seldin MM, Wei Z, Aja S, Wong GW. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol 2013;305:G214-24. https://doi.org/10.1152/ajpgi.00102.2013
- Feng H, Wang JY, Zheng M, et al. CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells. Exp Cell Res 2016;341:177-86. https://doi.org/10.1016/j.yexcr.2016.02.001
- Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW. Insulin-like growth factor-I extends in vitroreplicative life span of skeletal muscle satellite cells by enhancing g1/s cell cycle progression via the activation of phosphatidylinositol 3'-kinase/akt signaling pathway. J Biol Chem 2000;275:35942-52. https://doi.org/10.1074/jbc.M005832200
- Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 2010;299:E1096-105. https://doi.org/10.1152/ajpendo.00238.2010
- Otani M, Furukawa S, Wakisaka S, Maeda T. A novel adipokine C1q/TNF-related protein 3 is expressed in developing skeletal muscle and controls myoblast proliferation and differentiation. Mol Cell Biochem 2015;409:271-82. https://doi.org/10.1007/s11010-015-2531-y
- Wang H, Zhang Q, Wang BB, et al. miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1. Eur J Cell Biol 2018;97:257-68. https://doi.org/10.1016/j.ejcb.2018.03.006
- Li F, Hou L, Ma Y, Pang Q, Guan W. Isolation, culture, identification and muscle differentiation of skeletal muscle satellite cells in Beijing fatty chicken. Sci Agric Sin 2010;43:4725-31. https://doi.org/10.3864/j.issn.0578-1752.2010.22.021
- Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 2012;30:243-52. https://doi.org/10.1002/stem.775
- Chen X, Wu Y, Diao Z, et al. C1q/tumor necrosis factor-related protein-3 improves renal fibrosis via inhibiting notch signaling pathways. J Cell Physiol 2019;234:22352-64. https://doi.org/10.1002/jcp.28801
- Renault V, Rolland E, Thornell LE, Mouly V, Butler-Browne G. Distribution of satellite cells in the human vastus lateralis muscle during aging. Exp Gerontol 2002;37:1513-4. https://doi.org/10.1016/s0531-5565(02)00095-5
- Hartley RS, Bandman E, Yablonka-Reuveni Z. Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 1992;153:206-16. https://doi.org/10.1016/0012-1606(92)90106-Q
- Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 2004;301:1-7. https://doi.org/10.1016/j.yexcr.2004.08.004
- Baquero-Perez B, Kuchipudi SV, Nelli RK, Chang KC. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol 2012;13:16. https://doi.org/10.1186/1471-2121-13-16
- He K, Ren T, Zhu S, Liang S, Zhao A. Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose. J Genet 2017;96:39-46. https://doi.org/10.1007/s12041-016-0737-8
- Gu L, Xu T, Huang W, Xie M, Sun S, Hou S. Identification and profiling of microRNAs in the embryonic breast muscle of pekin duck. PLoS One 2014;9:e86150. https://doi.org/10.1371/journal.pone.0086150
- Shawber C, Nofziger D, Hsieh JJ, et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 1996;122:3765-73. https://doi.org/10.1242/dev.122.12.3765
- Ono Y, Sensui H, Okutsu S, Nagatomi R. Notch2 negatively regulates myofibroblastic differentiation of myoblasts. J Cell Physiol 2007;210:358-69. https://doi.org/10.1002/jcp.20838
- Buas MF, Kabak S, Kadesch T. The Notch effector Hey1 associates with myogenic target genes to repress myogenesis. J Biol Chem 2010;285:1249-58. https://doi.org/10.1074/jbc.M109.046441