References
- Wientjes YCJ, Calus MPL. Board invited review: the purebred-crossbred correlation in pigs: a review of theory, estimates, and implications. J Anim Sci 2017;95:3467-78. https://doi.org/10.2527/jas.2017.1669
- Juarez M, Clemente I, Polvillo O, Molina A. Meat quality of tenderloin from Iberian pigs as affected by breed strain and crossbreeding. Meat Sci 2009;81:573-9. https://doi.org/10.1016/j.meatsci.2008.10.016
- Wei M, van der Werf JHJ. Maximizing genetic response in crossbreds using both purebred and crossbred information. Anim Sci 1994;59:401-13. https://doi.org/10.1017/S0003356100007923
- Bijma P, van Arendonk JAM. Maximizing genetic gain for the sire line of a crossbreeding scheme utilizing both purebred and crossbred information. Anim Sci 1998;66:529-42. https://doi.org/10.1017/S135772980000970X
- Tusell L, Gilbert H, Riquet J, Mercat MJ, Legarra A, Larzul C. Pedigree and genomic evaluation of pigs using a terminal-cross model. Genet Sel Evol 2016;48:32. https://doi.org/10.1186/s12711-016-0211-3
- Habier D, Gotz KU, Dempfle L. Estimation of genetic parameters on test stations using purebred and crossbred progeny of sires of the Bavarian Pietrain. Livest Sci 2007;107:142-51. https://doi.org/10.1016/j.livsci.2006.09.012
- Edea Z, Hong JK, Jung JH, et al. Detecting selection signatures between Duroc and Duroc synthetic pig populations using high-density SNP chip. Anim Genet 2017;48:473-7. https://doi.org/10.1111/age.12559
- Gilbert H, Billon Y, Brossard L, et al. Review: divergent selection for residual feed intake in the growing pig. Animal 2017;11:1427-39. https://doi.org/10.1017/S175173111600286X
- Harris AJ, Patience JF, Lonergan SM, Dekkers CJM, Gabler NK. Improved nutrient digestibility and retention partially explains feed efficiency gains in pigs selected for low residual feed intake. J Anim Sci 2012;90(Suppl 4):164-6. https://doi.org/10.2527/jas.53855
- Sargolzaei M, Iwaisaki H, Colleau JJ. CFC: a tool for monitoring genetic diversity. In: 8th World Congress on Genetics Applied to Livestock Production; 2006 Aug 13-18: Belo Horizonte, MG, Brasil.
- Choi JG, Cho CI, Choi IS, et al. Genetic parameter estimation in seedstock Swine population for growth performances. Asian-Australas J Anim Sci 2013;26:470-5. https://doi.org/10.5713/ajas.2012.12454
- Cai W, Casey DS, Dekkers JCM. Selection response and genetic parameters for residual feed intake in Yorkshire swine. J Anim Sci 2008;86:287-98. https://doi.org/10.2527/jas.2007-0396
- Ramos AM, Crooijmans RPMA, Affara NA, et al. Design of a high density SNP genotyping assay in the pig using snps identified and characterized by next generation sequencing technology. PLoS One 2009;4:e6524. https://doi.org/10.1371/journal.pone.0006524
- Wiggans GR, Sonstegard TS, VanRaden PM, et al. Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. J Dairy Sci 2009;92:3431-6. https://doi.org/10.3168/jds.2008-1758
- Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th world congress on genetics applied to livestock production. 2002. pp. 743-4.
- Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. Genet Sel Evol 2010;42:2. https://doi.org/10.1186/1297-9686-42-2
- Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93:743-52. https://doi.org/10.3168/jds.2009-2730
- VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
- Choy YH, Mahboob A, Cho CI, et al. Genetic parameters of pre-adjusted body weight growth and ultrasound measures of body tissue development in three seedstock pig breed populations in Korea. Asian-Australas J Anim Sci 2015;28:1696-702. https://doi.org/10.5713/ajas.14.0971
- Noguera JL, Varona L, Babot D, Estany J. Multivariate analysis of litter size for multiple parities with production traits in pigs: I. Bayesian variance component estimation. J Anim Sci 2002;80:2540-7. https://doi.org/10.1093/ansci/80.10.2540
- Arango J, Misztal I, Tsuruta S, Culbertson M, Herring W. Threshold-linear estimation of genetic parameters for farrowing mortality, litter size, and test performance of Large White sows. J Anim Sci 2005;83:499-506. https://doi.org/10.2527/2005.833499x
- Chen P, Baas TJ, Mabry JW, Dekkers JCM, Koehler KJ. Genetic parameters and trends for lean growth rate and its components in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 2002;80:2062-70. https://doi.org/10.1093/ansci/80.8.2062
- Suzuki K, Ishida M, Kadowaki H, Shibata T, Uchida H, Nishida A. Genetic correlations among fatty acid compositions in different sites of fat tissues, meat production, and meat quality traits in Duroc pigs. J Anim Sci 2006;84:2026-34. https://doi.org/10.2527/jas.2005-660
- Hicks C, Satoh M, Ishii K, Kuroki S, Fujiwara T, Furukawa T. Effect of sex on estimates of genetic parameters for daily gain and ultrasonic backfat thickness in swine. Asian-Australas J Anim Sci 1999;12:677-81. https://doi.org/10.5713/ajas.1999.677
- Hoque MA, Kadowaki H, Shibata T, Oikawa T, Suzuki K. Genetic parameters for measures of residual feed intake and growth traits in seven generations of Duroc pigs. Livest Sci 2009;121:45-9. https://doi.org/10.1016/j.livsci.2008.05.016
- Mrode RA, Kennedy BW. Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat. Anim Sci 1993;56:225-32. https://doi.org/10.1017/S0003356100021309
- Kadarmideen HN, Schworer D, Ilahi H, Malek M, Hofer A. Genetics of osteochondral disease and its relationship with meat quality and quantity, growth, and feed conversion traits in pigs. J Anim Sci 2004;82:3118-27. https://doi.org/10.2527/2004.82113118x
- Do DN, Strathe AB, Jensen J, Mark T, Kadarmideen HN. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds. J Anim Sci 2013;91:4069-79. https://doi.org/10.2527/jas.2012-6197
- Li X, Kennedy BW. Genetic parameters for growth rate and backfat in Canadian Yorkshire, Landrace, Duroc, and Hampshire pigs. J Anim Sci 1994;72:1450-4. https://doi.org/10.2527/1994.7261450x
- Saintilan R, Merour I, Brossard L, et al. Genetics of residual feed intake in growing pigs: relationships with production traits, and nitrogen and phosphorus excretion traits. J Anim Sci 2013;91:2542-54. https://doi.org/10.2527/jas.2012-5687
- Gunsett FC. Linear index selection to improve traits defined as ratios. J Anim Sci 1984;59:1185-93. https://doi.org/10.2527/jas1984.5951185x
- Saintilan R, Merour I, Schwob S, Sellier P, Bidanel J, Gilbert H. Genetic parameters and halothane genotype effect for residual feed intake in Pietrain growing pigs. Livest Sci 2011;142:203-9. https://doi.org/10.1016/j.livsci.2011.07.013
- Boddicker N, Gabler NK, Spurlock ME, Nettleton D, Dekkers JCM. Effects of ad libitum and restricted feed intake on growth performance and body composition of Yorkshire pigs selected for reduced residual feed intake. J Anim Sci 2011;89:40-51. https://doi.org/10.2527/jas.2010-3106
- Kennedy BW, van der Werf JH, Meuwissen TH. Genetic and statistical properties of residual feed intake. J Anim Sci 1993;71:3239-50. https://doi.org/10.2527/1993.71123239x
- Godinho RM, Bergsma R, Silva FF, et al. Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs. J Anim Sci 2018;96:817-29. https://doi.org/10.1093/jas/skx011
- Robertson A. The sampling variance of the genetic correlation coefficient. Biometrics 1959;15:469-85. https://doi.org/10.2307/2527750
- Sevillano CA, ten Napel J, Guimaraes SEF, Silva FF, Calus MPL. Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin. BMC Genomics 2018;19:740. https://doi.org/10.1186/s12864-018-5126-7
- Nakavisut S, Crump R, Suarez M, Graser HU. Genetic correlations between the performance of purebred and crossbred pigs. In: Proceedings of the Association for the Advancement of Animal Breeding and Genetics. 2005. pp. 99-102.
- Godinho RM, Bergsma R, Silva FF, et al. Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs. J Anim Sci 2018;96:817-29. https://doi.org/10.1093/jas/skx011
- Grubbs JK, Fritchen AN, Huff-Lonergan E, Dekkers JCM, Gabler NK, Lonergan SM. Divergent genetic selection for residual feed intake impacts mitochondria reactive oxygen species production in pigs. J Anim Sci 2013;91:2133-40. https://doi.org/10.2527/jas.2012-5894
- Colpoys JD, Abell CE, Young JM, et al. Effects of genetic selection for residual feed intake on behavioral reactivity of castrated male pigs to novel stimuli tests. Appl Anim Behav Sci 2014;159:34-40. https://doi.org/10.1016/j.applanim.2014.06.013
- Dunkelberger JR, Boddicker NJ, Serao NVL, Young JM, Rowland RRR, Dekkers JCM. Response of pigs divergently selected for residual feed intake to experimental infection with the PRRS virus. Livest Sci 2015;177:132-41. https://doi.org/10.1016/j.livsci.2015.04.014