DOI QR코드

DOI QR Code

A Study on Intention to Adopt Digital Payment Systems in India: Impact of COVID-19 Pandemic

  • Kavita Jain (Prestige Institute of Management, Research Devi Ahilya Vishwavidyalya Indore) ;
  • Rupal Chowdhary (Prestige Institute of Management, Research Indore)
  • Received : 2020.11.30
  • Accepted : 2021.02.01
  • Published : 2021.03.31

Abstract

Digitalization and digital transformations have metamorphized the face of Financial Inclusion globally, more so, in cash obsessed economies like India. The purpose of our study is to empirically analyze the users' intention to adopt digital payment systems, post Demonetisation, during the COVID-19 pandemic in India. The conceptual framework for the study is based on the Unified Theory of Acceptance and Use of Technology (UTAUT) adoption model with added operationalized constructs of Perceived Risk and Stickiness to use Cash. A total of 326 respondents were surveyed using a pre-tested questionnaire during the Nationwide Lockdown 3.0 in India. These responses were analyzed using Partial Least Squares - Structural Equation Modelling (PLS-SEM) technique. The findings of the study revealed that performance expectancy and facilitating conditions directly influence the intention of individuals to use digital payment systems, whereas the effect of perceived ease of use on digital payment systems is mediated through the attitude towards the digital payment systems during COVID-19 pandemic situation. Implications of the proposed adoption model are discussed. This will enable the other developing economies to formulate a digital ecosystem, that is here to stay even after the pandemic.

Keywords

References

  1. Alalwan, A. A., Dwivedi, Y. K., and Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110.
  2. Al-Saedi, K., Al-Emran, M., Abusham, E., & El Rahman, S. A. (2019). Mobile payment adoption: A systematic review of the UTAUT model. In 2019 International Conference on Fourth Industrial Revolution (ICFIR), IEEE, 1-5.
  3. Bailey, A. A., Pentina, I., Mishra, A. S., and Mimoun, M. S. B. (2017). Mobile payments adoption by US consumers: An extended TAM. International Journal of Retail & Distribution Management, 45(6), 626-640. https://doi.org/10.1108/IJRDM-08-2016-0144
  4. Center for Disease Control and Prevention(CDC) (2020). How to protect yourself & others. Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
  5. Chakrabarty, A. (2020). Coronavirus outbreak: How to handle currency, do banking-safety tips from IBA. Retrieved June 10, 2020 from https://www.financialexpress.com/money/coronavirus-outbreak-how-to-handle-currency-do-banking-safety-tips-from-iba/1905282/.
  6. Chiu, Y. B., Lin, C. P., and Tang, L. L. (2005). Gender differs: Assessing a model of online purchase intentions in e-tail service. International Journal of Service Industry Management, 16(5), 416-435. https://doi.org/10.1108/09564230510625741
  7. Dahlberg, T., Guo, J., and Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265-284. https://doi.org/10.1016/j.elerap.2015.07.006
  8. Dahlberg, T., Mallat, N., Ondrus, J., and Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181. https://doi.org/10.1016/j.elerap.2007.02.001
  9. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
  10. Delone, W. H., and Mclean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31-47. https://doi.org/10.1080/10864415.2004.11044317
  11. Dijkstra, T. K., and Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81(1), 10-23. https://doi.org/10.1016/j.csda.2014.07.008
  12. Dudharejia, M. (2018). Cash on delivery dominates Indian e-commerce. Retrieved June 11, 2020 from https://www.practicalecommerce.com/cash-delivery-dominates-indian-ecommerce.
  13. Featherman, M. S., and Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(2003), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
  14. Fornell, C., and Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error. Algebra and Statistics.
  15. Gefen, D., Straub, D., and Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), 7.
  16. Gudergan, S. P., Ringle, C. M., Wende, S., and Will, A. (2008). Confirmatory tetrad analysis in PLS path modelling. Journal of Business Research, 61(12), 1238-1249. https://doi.org/10.1016/j.jbusres.2008.01.012
  17. Guraau, C. (2002). Online banking in transition economies: The implementation and development of online banking systems in Romania. International Journal of Bank Marketing, 20(6), 285-296. https://doi.org/10.1108/02652320210446742
  18. Harris, M., Chin, A., and Beasley, J. (2019). Mobile payment adoption: An empirical review and opportunities for future research. AIS Electronic Library.
  19. Hair, J. F. et al. (2006). Multivariate data analysis (6th ed.). Pearson-Prentice Hall.
  20. Hair Jr, J. F., Sarstedt, M., Matthews, L. M., and Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: Part I-method. European Business Review, 28(1), 63-76. https://doi.org/10.1108/EBR-09-2015-0094
  21. Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. (2017). A primer on Partial Least Squares-Structural Equation Modelling (PLS-SEM). Sage, Thousand Oaks, CA.
  22. Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
  23. Henseler, J., Hubona, G., and Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382
  24. Ilankumaran, G. (2019). Payment system indicators of digital banking ecosystem in India. International Journal of Scientific & Technology Research.
  25. Jagannathan, M. (2020). World Health Organization: 'We did NOT say that cash was transmitting coronavirus'. Retrieved from https://www.marketwatch.com/story/who-we-did-not-say-that-cash-was-transmitting-coronavirus-2020-03-06.
  26. Kalinic, Z., Liebana-Cabanillas, F. J., Munoz-Leiva, F., and Marinkovic, V. (2019). The moderating impact of gender on the acceptance of peer-to-peer mobile payment systems. International Journal of Bank Marketing, 38(1), 138-158.
  27. Klapper, L., and Singer, D. (2014, August 28). The opportunities of digitizing payments. Report by the World Bank Development Research Group, the Better than Cash Alliance, and the Bill & Melinda Gates Foundation for the G 20 Global Partnership for Financial Inclusion.
  28. Kim, C., Mirusmonov, M., and Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322. https://doi.org/10.1016/j.chb.2009.10.013
  29. Kim, D. J., Ferrin, D. L., and Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001
  30. Kokkola, T. (2010). The payment system: Payments, securities and derivatives, and the role of the Eurosystem. European Central Bank.
  31. Kuisma, T., Laukkanen, T., and Hiltunen, M. (2007). Mapping the reasons for resistance to internet banking: A means-end approach. International Journal of Information Management, 27(2), 75-85. https://doi.org/10.1016/j.ijinfomgt.2006.08.006
  32. Laukkanen, T., and Kiviniemi, V. (2010). The role of information in mobile banking resistance. The International Journal of Bank Marketing, 28(5), 372-388.
  33. Laukkanen, T., and Lauronen, J. (2005). Consumer value creation in mobile banking services. International Journal of Mobile Communications, 3(4), 325-338. https://doi.org/10.1504/IJMC.2005.007021
  34. Laukkanen, T., Sinkkonen, S., Kivijarvi, M., and Laukkanen, P. (2007). Innovation resistance among mature consumers. Journal of Consumer Marketing, 24(7), 419-427. https://doi.org/10.1108/07363760710834834
  35. Laukkanen, T. (2007). Internet vs mobile banking: Comparing customer value perceptions. Business Process Management Journal, 13(6), 788-797.
  36. Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. https://doi.org/10.1016/j.elerap.2008.11.006
  37. Lee, J., Pee, L. G., and Min, J. (2016). New perspectives on the development, adoption, and application of information systems. Asia Pacific Journal of Information Systems, 26(3), 385-392. doi:10.14329/apjis.2016.26.3.385.
  38. Liang, S. W. J., Ekinci, Y., Occhiocupo, N., and Whyatt, G. (2013). Antecedents of travelers' electronic word-of-mouth communication. Journal of Marketing Management, 29(5/6), 584-606.
  39. Liebana-Cabanillas, F., Munoz-Leiva, F., and Sanchez-Fernandez, J. (2018). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 12(1), 25-64.
  40. Lin, J. C. C. (2007). Online stickiness: Its antecedents and effect on purchasing intention. Behavior and Information Technology, 26(6), 507-516. https://doi.org/10.1080/01449290600740843
  41. Luo, X., Li, H., Zhang, J., and Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222-234. https://doi.org/10.1016/j.dss.2010.02.008
  42. Lu, Y., Yang, S., Chau, P. Y., and Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management, 48(8), 393-403.
  43. Merhi, M., Hone, K., and Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technology in Society, 59, 101151.
  44. Nunnally, J. C. (1978). Psychometric theory. McGraw-Hill, New York, NY.
  45. Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., and Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Research.
  46. Rana, N. P., Dwivedi, Y. K., Lal, B., Williams, M. D., and Clement, M. (2017). Citizens' adoption of an electronic government system: Towards a unified view. Information Systems Frontiers, 19(3), 549-568. https://doi.org/10.1007/s10796-015-9613-y
  47. Reserve Bank of India(RBI) (2007). The payment and settlement system act, 2007. Retrieved June 6, 2020 from https://rbidocs.rbi.org.in/rdocs/Publications/PDFs/86706.pdf.
  48. Rochet, J. C., and Tirole, J. (2002). Cooperation among competitors: Some economics of payment card associations. Rand Journal of Economics, 33(4), 549-570. https://doi.org/10.2307/3087474
  49. Rouibah, K., Lowry, P. B., and Hwang, Y. (2016). The effects of perceived enjoyment and perceived risks on trust formation and intentions to use online payment systems: New perspectives from an Arab country. Electronic Commerce Research and Applications, 19, 33-43. https://doi.org/10.1016/j.elerap.2016.07.001
  50. Sarstedt, M., and Mooi, E. A. (2019). A concise guide to market research: The process, data, and methods using IBM SPSS statistics. Springer, Heidelberg.
  51. Sharma, S. K., and Sharma, M. (2019). Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management, 44, 65-75.
  52. Singh, Charan, India Since Demonetisation (2018, March 28). IIM Bangalore research paper No. 567. Available at SSRN: https://ssrn.com/abstract=3151238 or doi:10.2139/ssrn.3151238.
  53. Singh, S., and Srivastava, R. K. (2018). Predicting the intention to use mobile banking in India. International Journal of Bank Marketing, 36(2), 357-378. doi:10.1108/IJBM-12-2016-0186.
  54. Slade, E., Williams, M., Dwivedi, Y., and Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223.
  55. Tan, M., and Teo, T. S. (2000). Factors influencing the adoption of Internet banking. Journal of the Association for Information Systems, 1(1), 5.
  56. Taylor, E. (2016). Mobile payment technologies in retail: A review of potential benefits and risks. International Journal of Retail & Distribution Management, 44(2), 159-177. https://doi.org/10.1108/IJRDM-05-2015-0065
  57. Taylor, S., and Todd, P. (1995a). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research In Marketing, 12(2), 137-155. https://doi.org/10.1016/0167-8116(94)00019-K
  58. Taylor, S., and Todd, P. (1995b). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570. https://doi.org/10.2307/249633
  59. Unique Identification Authority of India, U. (2019). What are the features and benefits of Aadhaar? Retrieved from https://uidai.gov.in/286-faqs/.
  60. Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  61. Yeh, R. C., Lin, Y. C., Tseng, K. H., Chung, P., Lou, S. J., Chen, Y. C., Nguyen, N. T., Trawinski, B., Katarzyniak, R. C., and Jo, G. S. (2013). Why do people stick to play social network sites? An extension of expectation-confirmation model with perceived interpersonal values and playfulness perspectives. In Advanced methods for computational collective intelligence (pp. 37-46). Springer Berlin Heidelberg. doi:10.1007/978-3-642-34300-1_4.
  62. Zhou, M., Geng, D., Abhishek, V., and Li, B. (2020). When the bank comes to you: Branch network and customer Omnichannel banking behavior. Information Systems Research, 31(1), 176-197. https://doi.org/10.1287/isre.2019.0880
  63. Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091. https://doi.org/10.1016/j.dss.2012.10.034
  64. Zhou, T. (2012). Examining location-based services usage from the perspectives of unified theory of acceptance and use of technology and privacy risk. Journal of Electronic Commerce Research, 13(2), 135-144.