DOI QR코드

DOI QR Code

The Impacts of AI-enabled Search Services on Local Economy

AI 기반 장소 검색 서비스가 지역 경제에 미치는 영향에 대한 실증 연구

  • Heejin Joo (School of Business Administration, Korea University) ;
  • Jeongmin Kim (School of Management Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jeemahn Shin (School of Business Administration, Hanyang University) ;
  • Keongtae Kim (Chinese University of Hong Kong, Business School) ;
  • Gunwoong Lee (School of Business Administration, Korea University)
  • Received : 2021.01.15
  • Accepted : 2021.06.22
  • Published : 2021.08.31

Abstract

This research investigates the pivotal role of AI-enabled technologies in vitalizing the local economy. Collaborating with a leading search engine company, we examine the direct and indirect of an AI-based location search service on the success of sampled 7,035 local restaurants in Gangnam area in Seoul. We find that increased use of AI-enabled search and recommendation services significantly improved the selections of previously less-discovered or less-popular restaurants by users, and it also enhanced the stores' overall conversion rates. The main research findings have contributions to extant literature in theorizing the value of AI applications in local economy and have managerial implications for search businesses and local stores by recommending strategic use of AI applications in their businesses that are effective in highly competitive markets.

최근 인터넷과 모바일 플랫폼에서 AI 기술을 도입하여 서비스 이용자 및 제공자의 효용 가치를 증가하고자 하는 관심이 증대되고 있다. 본 연구는 지역경제, 특히 외식 산업의 활성화에 있어서 AI 기술이 어떤 역할을 가져오는지에 대해 살펴보고자 한다. 국내 최대 인터넷 포털과의 협업을 통해 서비스 이용자 수가 가장 많은 서울시 강남구 지역의 7,035개의 지역 외식 업체들을 대상으로 상점 검색과 선택과 같은 이용자의 참여도에 미치는 AI 추천 서비스의 영향을 실증분석을 통해 확인하였다. 연구결과 AI 검색 및 추천 시스템의 사용은 이전에 덜 주목을 받던 상점의 노출을 증가시키며 서비스 이용자들에 의한 전반적인 상점 선택수와 전환율을 향상시키는 것으로 밝혀졌다. 본 연구의 주요 시사점은 지역 경제에 대한 AI 기반 정보시스템의 가치를 이론화하여 기존 연구를 확장하였다는 점과 지역 상점 및 검색 서비스 제공자들에게 효과적인 AI 기술의 사용이 지역경제 활성화에 이바지할 수 있다는 시사점을 제시한다.

Keywords

References

  1. 국경완, "인공지능 기술 및 산업 분야별 적용 사례", 주간기술동향, 제20권, 2019, pp. 15-27.
  2. 오픈서베이, "소셜미디어 및 검색포털 트렌드 리포트 2020", 2020, Available at https://blog.opensurvey.co.kr/trendreport/socialmedia-2020/.
  3. Agichtein, E., E. Brill, S. Dumais, and R. Ragno, "Learning user interaction models for predicting web search result preferences", Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2006, pp. 3-10.
  4. Agrawal, A., J. Gans, and A. Goldfarb, Prediction Machines: the Simple Economics of Artificial Intelligence, Harvard Business Press, 2018, pp.3-8.
  5. Albinali, H., M. Han, J. Wang, H. Gao, and Y. Li, "The roles of social network mavens", 12th International Conference on Mobile Ad-Hoc and Sensor, 2016, pp. 1-8.
  6. Bughin, J., J. Seong, J. Manyika, M. Chui, and R. Joshi, Notes from the AI frontier: Modeling the impact of AI on the world economy", McKinsey Global Institute, 2018.
  7. Campos, P. G., F. Diez, and I. Cantador, "Timeaware recommender systems: A comprehensive survey and analysis of existing evaluation protocols", User Modeling and User-Adapted Interaction, Vol.24, No.1-2, 2014, pp. 67-119. https://doi.org/10.1007/s11257-012-9136-x
  8. Carterette, B. and R. Jones, "Evaluating search engines by modeling the relationship between relevance and clicks", Computer Science Department Faculty Publication Series, Vol.26, 2007.
  9. Chai, J., V. Horvath, N. Nicolov, M. Stys, N. Kambhatla, W. Zadrozny, and P. Melville, "Natural language assistant: A dialog system for online product recommendation", AI Magazine, Vol.23, No.2, 2002, pp. 63-63.
  10. Dupret, G. E. and B. Piwowarski, "A user browsing model to predict search engine click data from past observations", Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2008, pp. 331-338.
  11. Gan, Q., J. Attenberg, A. Markowetz, and T. Suel, "Analysis of geographic queries in a search engine log", Proceedings of the First International Workshop on Location and the Web, April 2008, pp. 49-56.
  12. Ghose, A. and S. Yang, "An empirical analysis of search engine advertising: Sponsored search in electronic markets", Management Science, Vol.55, No.10, 2009, pp. 1605-1622. https://doi.org/10.1287/mnsc.1090.1054
  13. Graphic, V. and U. Center, "GVU's 10th WWW user survey", Georgia Tech Research Corp, 1998.
  14. Gutlic, A. and E. Mujcic, "Intelligent web application for search of restaurants and their services", International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies, 2019, pp. 452-469.
  15. Horozov, T., N. Narasimhan, and V. Vasudevan, "Using location for personalized POI recommendations in mobile environments", International Symposium on Applications and the Internet, January 2006, pp. 124-129.
  16. Laughton, M. A., "Artificial intelligence techniques in power systems", in K. Warwick, A. Ekwue, R. Aggarwal, and R. Aggarwal (eds.), Artificial Intelligence Techniques in Power Systems, IET, 1997, pp. 1-18.
  17. Lawrence, S. and C. L. Giles, "Context and page analysis for improved web search", IEEE Internet Computing, Vol.2, No.4, 1998, pp. 38-46. https://doi.org/10.1109/4236.707689
  18. Lawrence, S., "Context in web search", IEEE Data Engineering Bulletin, Vol.23, No.3, 2000, pp. 25-32.
  19. McAfee, A. and E. Brynjolfsson, Machine, Platform, Crowd: Harnessing Our Digital Future, WW Norton & Company, New York, 2017, pp. 22-36. 
  20. Micarelli, A., F. Gasparetti, F. Sciarrone, and S. Gauch, "Personalized search on the world wide web", in Brusilovski, P., Kobsa, A., and Nejdl, W., The Adaptive Web: Methods and Strategies of Web Personalization, Springer, Berlin, 2007, pp. 195-230.
  21. Mizzaro, S., "Relevance: The whole history", Journal of the American Society for Information Science, Vol.48, No.9, 1997, pp. 810-832. https://doi.org/10.1002/(SICI)1097-4571(199709)48:9<810::AID-ASI6>3.0.CO;2-U
  22. Moschis, G., C. F. Curasi, and D. Bellenger, "Restaurant-selection preferences of mature consumers", Cornell Hotel and Restaurant Administration Quarterly, Vol.44, No.4, 2003, pp. 51-60. https://doi.org/10.1016/S0010-8804(03)90258-8
  23. Murphy, J., E. Forrest, and C. E. Wotring, "Restaurant marketing on the worldwide web", Cornell Hotel and Restaurant Administration Quarterly, Vol.37, No.1, 1997, pp. 61-71. https://doi.org/10.1177/001088049603700117
  24. Nakamura, S., S. Konishi, A. Jatowt, H. Ohshima, H. Kondo, T. Tezuka, and K. Tanaka, "Trustworthiness analysis of web search results", International Conference on Theory and Practice of Digital Libraries, 2007, pp. 38-49.
  25. Pan, B., T. MacLaurin, and J. C. Crotts, "Travel blogs and the implications for destination marketing", Journal of Travel Research, Vol.46, No.1, 2007, pp. 35-45. https://doi.org/10.1177/0047287507302378
  26. Rutz, O. J., R. E. Bucklin, and G. P. Sonnier, "A latent instrumental variables approach to modeling keyword conversion in paid search advertising", Journal of Marketing Research, Vol.49, No.3, 2012, pp. 306-319. https://doi.org/10.1509/jmr.10.0354
  27. Sclaroff, S., World Wide Web Image Search Engines, Boston University Computer Science Department, 1995.
  28. Shin, W., "Keyword search advertising and limited budgets", Marketing Science, Vol.34, No.6, 2015, pp. 882-896. https://doi.org/10.1287/mksc.2015.0915
  29. Smyth, B., J. Freyne, M. Coyle, and P. Briggs, "Recommendation as collaboration in web search", AI Magazine, Vol.32, No.3, 2011, pp. 35-45. https://doi.org/10.1609/aimag.v32i3.2362
  30. Somjai, S., K. Jermsittiparsert, and T. Chankoson, "Determining the initial and subsequent impact of artificial intelligence adoption on economy: a macroeconomic survey from ASEAN", Journal of Intelligent & Fuzzy Systems, 2020, pp. 1-16.
  31. Tse, A. C. B., L. Sin, and F. H. K. Yim, "How a crowded restaurant affects consumers' attribution behavior", Hospitality Management, Vol.21, 2002, pp. 449-454. https://doi.org/10.1016/S0278-4319(02)00035-X
  32. Tu, Z., Y. Fan, Y. Li, X. Chen, L. Su, and D. Jin, "From fingerprint to footprint: cold-start location recommendation by learning user interest from app data", Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol.3, No.1, 2019, pp. 1-22. https://doi.org/10.1145/3314413
  33. Tzeng, G. H., M. H. Teng, J. J. Chen, and S. Opricovic, "Multicriteria selection for a restaurant location in Taipei", International Journal of Hospitality Management, Vol.21, No.2, 2002, pp. 171-187. https://doi.org/10.1016/S0278-4319(02)00005-1
  34. Yi, X., H. Raghavan, and C. Leggetter, "Discovering users' specific geo intention in web search", Proceedings of the 18th International Conference on World Wide Web, April 2009, pp. 481-490.
  35. Zhang, X. and J. Feng, "Cyclical bid adjustments in search-engine advertising", Management Science, Vol.57, No.9, 2011, pp. 1703-1719. https://doi.org/10.1287/mnsc.1110.1408
  36. Zhang, Y., X. Chen, Q. Ai, L. Yang, and W. B. Croft, "Towards conversational search and recommendation: System ask, user respond", Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 177-186.