DOI QR코드

DOI QR Code

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Received : 2021.01.18
  • Accepted : 2021.02.08
  • Published : 2021.03.30

Abstract

A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Keywords

References

  1. S.C. Han, "Interdependent Safety Assessment of Integrated Low- and Intermediate Radioactive Waste Disposal System in the Republic of Korea", Master Thesis, KAIST (2015).
  2. M. Baik, S. Kim, J. Lee, S. Lee, G. Kim, and S. Yun, "Sorption of 14C, 99Tc, 137Cs, 90Sr, 63Ni, and 241Am onto a Rock and a Fracture-Filling Material from the Wolsong Low-and Intermediate-Level Radioactive Waste Repository, Gyeongju, Korea", J. Radioanal. Nucl. Chem., 283(2), 337-345 (2010). https://doi.org/10.1007/s10967-009-0369-z
  3. H. Lee, J. Seo, Y. Lee, W. Jung, and W. Sung, "Regional CO2 Solubility Trapping Potential of a Deep Saline Aquifer in Pohang Basin, Korea", Geosci. J., 20(4), 561-568 (2016). https://doi.org/10.1007/s12303-015-0068-4
  4. J. Yoon and J. Ahn, "A Systems Assessment for the Korean Advanced Nuclear Fuel Cycle Concept from the Perspective of Radiological Impact", Nucl. Eng. Technol., 42(1), 17-36 (2010). https://doi.org/10.5516/NET.2010.42.1.017
  5. B.W. Cho and C.O. Choo, "Geochemical Behavior of Uranium and Radon in Groundwater of Jurassic Granite Area, Icheon, Middle Korea", Water, 11(6), 1278 (2019). https://doi.org/10.3390/w11061278
  6. S.S. Kim, M.H. Baik, and K.C. Kang, "Solubility of Neptunium Oxide in the KURT (KAERI Underground Research Tunnel) Groundwater", J. Radioanal. Nucl. Chem., 280(3), 577-583 (2009). https://doi.org/10.1007/s10967-009-7481-y
  7. H. Lee, J. Seo, Y. Lee, W. Jung, and W. Sung, "Regional CO2 Solubility Trapping Potential of a Deep Saline Aquifer in Pohang basin, Korea", Geosci. J., 20(4), 561-568 (2016). https://doi.org/10.1007/s12303-015-0068-4
  8. J.S. Yoon, H.W. Jung, M.N. Kim, and E.S. Park, "Diffusion Coefficient and Equilibrium Solubility of Water Molecules in Biodegradable Polymers", J. Appl. Polym. Sci., 77(8), 1716-1722 (2000). https://doi.org/10.1002/1097-4628(20000822)77:8<1716::AID-APP8>3.0.CO;2-F
  9. D.L. Parkhurst and C.A.L. Appelo. Description of Input and Examples for PHREEQC Version 3-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Open-File Report, 1-497, 6-A43 (2013).
  10. Y. Jo, J.Y. Lee, and J.I. Yun, "Adsorption of Uranyl Tricarbonate and Calcium Uranyl Carbonate onto γ-alumina", Appl. Geochemistry, 94, 28-34 (2018). https://doi.org/10.1016/j.apgeochem.2018.05.004
  11. A. Kitamura. Update of JAEA-TDB: Update of Thermodynamic Data for Zirconium and Those for Isosaccahrinate, Tentative Selection of Thermodynamic Data for Ternary M2+-UO22+-CO32- System and Integration with JAEA's Thermodynamic Database for Geochemical Calculations, Japan Atomic Energy Agency Research Report, 1-103, JAEA-Data/Code 2018-018 (2019).
  12. E. Giffaut, M. Grive, P. Blanc, P. Vieillard, E. Colas, H. Gailhanou, S. Gaboreau, N. Marty, B. Made, and L. Duro, "Andra Thermodynamic Database for Performance Assessment: ThermoChimie", Appl. Geochemistry, 49, 225-236 (2014). https://doi.org/10.1016/j.apgeochem.2014.05.007
  13. W. Hummel, U. Berner, E. Curti, F. Pearson, and T. Thoenen, "Nagra/PSI Chemical Thermodynamic Data Base 01/01", Radiochim Acta, 90(9-11), 805-813 (2002). https://doi.org/10.1524/ract.2002.90.9-11_2002.805
  14. I. Grenthe, H. Wanner, and E. Osthols. TDB-2: Guidelines for the Extrapolation to zero Ionic Strength, Nuclear Energy Agency in Organization for Economic Co-operation and Developement Report 1-103, TDB-2 (2000).
  15. C.W. Davies and T. Shedlovsky, "Ion Association", J. Electrochem. Soc., 111(3), 85C (1964).
  16. L. Ciavatta, "The Specific Interaction Theory in Evaluating Ionic Equilibria", Ann. Chim., 70, 551 (1980).
  17. K.S. Pitzer, "Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations", J. Phys. Chem. C, 77(2), 268-277 (1973). https://doi.org/10.1021/j100621a026
  18. P. Debye and E. Huckel, "De la Theorie des Electrolytes. I. Abaissement du Point de Congelation et Phenomenes Associes", Phys. Z., 24(9), 185-206 (1923).
  19. C. Yu, E. Gnanapragasam, J.J. Cheng, D. Lepoire, S. Kamboj, and C. Wang. User's Manual for RESRADOFFSITE Code Version 4, Argonne National Laboratory Report, 1-544, ANL/EVS/TM-19/2 (2020).
  20. S.J. Park, J. Byon, M.C. Lee, and S. Ahn, "Derivation of Preliminary DCGL for Kori Unit 1 Using RESRAD-OFFSITE and Comparison with RESRAD-ONSITE", Ann. Nucl. Energy, 151, 107954 (2021). https://doi.org/10.1016/j.anucene.2020.107954
  21. S.J. Park, J. Byon, D.H. Ban, S. Lee, W. Sohn, and S. Ahn, "Derivation of Preliminary Derived Concentration Guideline Level (DCGL) by Reuse Scenario for Kori Unit 1 Using RESRAD-BUILD", Nucl. Eng. Technol., 52(6), 1231-1242 (2020). https://doi.org/10.1016/j.net.2019.11.032
  22. J. Byon, S. Park, and S. Ahn, "Derivation of Preliminary Derived Concentration Guideline Levels for Surface Soil at Kori Unit 1 by RESRAD Probabilistic Analysis", Nucl. Eng. Technol., 50(8), 1289-1297 (2018). https://doi.org/10.1016/j.net.2018.07.018
  23. J. Byon, S. Park, and S. Ahn, "Study on the Soil Evaluation Methodology of on and Offsite Kori Unit 1", Ann. Nucl. Energy, 144, 107497 (2020). https://doi.org/10.1016/j.anucene.2020.107497
  24. J. Byon, S. Park, and S. Ahn, "Preliminary Surface Soil Area Factor for Elevated Residual Radioactivity of Kori Unit 1 Considering Adjacent Unit 2", Ann. Nucl. Energy, 135, 106958 (2020). https://doi.org/10.1016/j.anucene.2019.106958