References
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13, 125-147. https://doi.org/10.1007/BF00041230.
- El-Karamany, A.S. and Ezzat, M.A. (2004), "Analytical aspects in boundary integral equation formulation for the generalized linear micropolar thermoelasticity", Int. J. Mech. Sci., 46(3), 389-409. https://doi.org/10.1016/j.ijmecsci.2004.03.013.
- El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phase-lag linear micropolar thermoelasticity theory", Eur. J. Mech.-A/Solid., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011.
- Eringen, A.C. (1970), "Foundations of micropolar thermoelasticity", Course of Lectures No. 23, CSIM Udine Springer.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulate of thermo-mechanics", Proc. Roy. Soc. London, 432, 171-194.
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969.
- Kumar, R. and Chawla, V. (2011), "A study of plane wave propagation in anisotropic three-phase-lag and two-phase-lag model", Int. Commun. Heat Mass Transf., 38(9) 1262-1268. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.005.
- Lord, H.W. and Shulman Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67) 90024-5.
- Marin, M., Agarwal, R.P. and Othman, M.I.A. (2014), "Localization in time of solutions for thermoelastic micropolar materials with voids", Comput., Mater. Continua, 40(1), 35-48. https://doi.org/10.3970/cmc.2014.040.035.
- Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl, 25(1-2), 175-196.
- Marin, M., Othman, M.I.A. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for anisotropic thermo-elastic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. https://doi.org/10.1166/jctn.2015.3974.
- Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863-878. https://doi.org/10.3390/sym11070863.
- Nowacki, M. (1966), "Couple-stresses in the theory of thermo-elasticity", Proc. IUTAM Symposia, Vienna, Springer-Verlag.
- Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Plane waves in a magneto-thermoelastic solids with voids and microtemperatures due to hall current and rotation", Result. Phys., 7, 4253-4263. https://doi.org/10.1016/j.rinp.2017.10.053.
- Othman, M.I.A. and Abd-Elaziz, E.M. (2019), "Effect of initial stress and hall current on a magneto-thermoelastic porous medium with micro-temperatures", Indi. J. Phys., 93(4), 475-485. https://doi.org/10.1007/s12648-018-1313-2.
- Othman, M.I.A. and Atwa, S.Y. (2012), "Response of micropolar thermoelastic medium with voids due to various source under Green-Naghdi theory", Acta Mechanica Solida Sinica, 25(2), 197-209. https://doi.org/10.1016/S0894-9166(12)60020-2.
- Othman, M.I.A. and Eraki, E.E.M. (2017), "Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model", Mech. Bas. Des. Struct. Mach., 45(2), 145-159. http://dx.doi.org/10.1080/15397734.2016.1152193.
- Othman, M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermo-elasticity half-space under three theories", Multidisc. Model. Mater. Struct., 5(1), 43-58. https://doi.org/10.1108/15736105200900003.
- Othman, M.I.A. and Song, Y.Q. (2016), "Effect of thermal relaxation and magnetic field on generalized micropolar thermoelastic medium", J. Appl. Mech. Tech. Phys., 57(1), 108-116. https://doi.org/10.1134/S0021894416010120.
- Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Tran., 51(1/2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
- Said, S.M. (2016), "Wave propagation in a magneto-micropolar thermoelastic medium with two-temperature for three-phase-lag model", Comput. Mater. Continua, 52(1), 1-24.
- Scalia, A. (1990), "On some theorems in the theory of micropolar thermoelasticity", Int. J. Eng. Sci., 28(3), 181-189. https://doi.org/10.1016/0020-7225(90)90122-Y.
- Sheokand, S.K., Kumar, R., Kalkal, K.K. and Deswal, S. (2019), "Propagation of plane waves in an orthotropic magneto-thermo-diffusive rotating half-space", Struct. Eng. Mech., 72(4), 455-468. https://doi.org/10.12989/sem.2019.72.4.455.
- Tauchert, T.R., Claus, W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", Int. J. Eng. Sci., 6(1), 37-47. https://doi.org/10.1016/0020-7225(68)90037-2
- Yang, X.J. (2017), "A new integral transform operator for solving the heat-diffusion problem", Appl. Math. Lett., 64, 193-197. https://doi.org/10.1016/j.aml.2016.09.011.
- Yang, X.J. and Gao, F. (2017), "A new technology for solving diffusion and heat equations", Therm. Sci., 21(1), 133-140. https://doi.org/10.2298/TSCI160411246Y
- Yang, X.J., Baleanu, D., Lazarevic, M.P. and Cajic, M.S. (2015), "Fractal boundary value problems for integral and differential equations with local fractional operators", Therm. Sci., 9(3), 959-966.
- Yang, X.J., Srivastava, H.M. and Machado, J.A.T. (2016), "A new fractional derivative without singular kernel application to the modelling of the steady heat flow", Therm. Sci., 20(2), 753-756. https://doi.org/10.2298/tsci151224222y