References
- Chen, Z., Han, Z., Fang, H. and Wei, K. (2018), "Seismic vibration control for bridges with high-piers in Sichuan-Tibet railway", Struct, Eng, Mech., 66(6), 749-759. https://doi.org/10.12989/sem.2018.66.6.749.
- Chen, Z., Han, Z., Zhai, W. and Yang, J. (2019), "TMD design for seismic vibration control of high-pier bridges in Sichuan-Tibet Railway and its influence on running trains", Veh. Syst. Dyn., 57(2), 207-225. https://doi.org/10.1080/00423114.2018.1457793.
- Den Hartog, J.P. (1985), Mechanical Vibrations, Courier Corporation, New York, NY, USA.
- Domaneschi, M. and Martinelli, L. (2014), "Refined optimal passive control of buffeting-induced wind loading of a suspension bridge", Wind Struct., 18(1), 1-20. https://doi.org/10.12989/was.2014.18.1.001.
- Domaneschi, M., Martinelli, L. and Po, E. (2015), "Control of wind buffeting vibrations in a suspension bridge by TMD: Hybridization and robustness issues", Comput. Struct., 155, 3-17. https://doi.org/10.1016/j.compstruc.2015.02.031.
- Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.
- Fiore, A. and Marano, G.C. (2018), "Serviceability performance analysis of concrete box girder bridges under traffic-induced vibrations by structural health monitoring: A case study", Int. J. Civil Eng., 16(5), 553-565. https://doi.org/10.1007/s40999-017-0161-3.
- Ghaedi, K., Ibrahim, Z., Adeli, H. and Javanmardi, A. (2017), "Invited review: Recent developments in vibration control of building and bridge structures", J. Vibroeng., 19(5), 3564-3580. https://doi.org/10.21595/jve.2017.18900.
- Iranian Standards No. 139, Standard Loads for Bridges (2005), Office of the Deputy for Technical Affairs, Bureau of Technical Affairs and Standards, Tehran, Iran.
- Lievens, K., Lombaert, G., De Roeck, G. and Van den Broeck, P. (2016), "Robust design of a TMD for vibration serviceability of foot-bridges accounting for structural and loading uncertainties", Proceedings of ISMA2016 including USD2016, Leuven, September.
- Lievens, K., Lombaert, G., Van Nimmen, K., De Roeck, G. and Van den Broeck, P. (2018), "Robust vibration serviceability assessment of footbridges subjected to pedestrian excitation: strategy and applications", Eng. Struct., 171, 236-246. https://doi.org/10.1016/j.engstruct.2018.05.047.
- Liu, J., Qu, W., Nikitas, N. and Ji, Z. (2018), "Research on extending the fatigue life of railway steel bridges by using intelligent control", Constr. Build. Mater., 168, 532-546. https://doi.org/10.1016/j.conbuildmat.2018.02.125.
- Matin, A., Elias, S. and Matsagar, V. (2020), "Distributed multiple tuned mass dampers for seismic response control in bridges", Proceedings of the Institution of Civil Engineers-Structures and Buildings, London, March.
- Miguel, L.F., Lopez, R.H., Torii, A.J., Miguel, L.F. and Beck, A.T. (2016), "Robust design optimization of TMDs in vehicle-bridge coupled vibration problems", Eng. Struct., 126, 703-711. https://doi.org/10.1016/j.engstruct.2016.08.033.
- Mokrani, B., Tian, Z., Alaluf, D., Meng, F. and Preumont, A. (2017), "Passive damping of suspension bridges using multi-degree of freedom tuned mass dampers", Eng. Struct., 153, 749-756. https://doi.org/10.1016/j.engstruct.2017.10.028.
- Nguyen, T., Miura, N. and Sone, A. (2016), "An optimization method of multiple tuned mass damper systems and application to bridge with moving car", Proceedings of the ASME 2016 Pressure Vessels and Piping Conference, British Columbia, July.
- Pipinato, A. (2019), "Extending the fatigue life of steel truss bridges with tuned mass damper systems", Adv. Civil Eng., 2019, Article ID 5409013. https://doi.org/10.1155/2019/5409013.
- Qin, S., Zhou, Y.L. and Kang, J. (2019), "Footbridge serviceability analysis: from system identification to tuned mass damper implementation", KSCE J. Civil Eng., 23(2), 754-762. https://doi.org/10.1007/s12205-018-0985-7.
- Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control, 21(5), 919-937. https://doi.org/10.1177/1077546313478294.
- Spencer Jr., B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845856. https://doi.org/10.1061/(ASCE)07339445(2003)129:7(845).
- Tubino, F. and Piccardo, G. (2015), "Tuned mass damper optimization for the mitigation of human-induced vibrations of pedestrian bridges", Meccanica, 50(3), 809-824. https://doi.org/10.1007/s11012-014-0021-z.
- Tubino, F. and Piccardo, G. (2016), "Serviceability assessment of footbridges in unrestricted pedestrian traffic conditions", Struct. Infrastr. Eng., 12(12), 1650-1660. https://doi.org/10.1080/15732479.2016.1157610.
- Wang, D., Wu, C., Zhang, Y. and Li, S. (2019), "Study on vertical vibration control of long-span steel footbridge with tuned mass dampers under pedestrian excitation", J. Constr. Steel Res., 154, 84-98. https://doi.org/10.1016/j.jcsr.2018.11.021.
- Yang, Y.B., Wang, Z.L., Shi, K., Xu, H. and Wu, Y.T. (2020), "State-of-the-art of the vehicle-based methods for detecting the various properties of highway bridges and railway tracks", Int. J. Struct. Stab. Dyn., 20(13), 2041004. https://doi.org/10.1142/S0219455420410047.
- Yin, X., Liu, Y., Song, G. and Mo, Y.L. (2018), "Suppression of bridge vibration induced by moving vehicles using pounding tuned mass dampers", J. Bridge Eng., 23(7), 04018047. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001256.
- Yin, X., Song, G. and Liu, Y. (2019), "Vibration suppression of wind/traffic/bridge coupled system using multiple pounding tuned mass dampers (MPTMD)", Sensor., 19(5), 1133. https://doi.org/10.3390/s19051133.