DOI QR코드

DOI QR Code

A Review on Degradation of Silicon Photovoltaic Modules

  • Yousuf, Hasnain (Department of Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Khokhar, Muhammad Quddamah (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Zahid, Muhammad Aleem (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Jaeun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Youngkuk (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cho, Sung Bae (R&D Center, SK Solar Energy Co., LTD) ;
  • Cho, Young Hyun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cho, Eun-Chel (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • Received : 2020.12.29
  • Accepted : 2021.02.16
  • Published : 2021.03.25

Abstract

Photovoltaic (PV) panels are generally treated as the most dependable components of PV systems; therefore, investigations are necessary to understand and emphasize the degradation of PV cells. In almost all specific deprivation models, humidity and temperature are the two major factors that are responsible for PV module degradation. However, even if the degradation mode of a PV module is determined, it is challenging to research them in practice. Long-term response experiments should thus be conducted to investigate the influences of the incidence, rates of change, and different degradation methods of PV modules on energy production; such models can help avoid lengthy experiments to investigate the degradation of PV panels under actual working conditions. From the review, it was found that the degradation rate of PV modules in climates where the annual average ambient temperature remained low was -1.05% to -1.16% per year, and the degree of deterioration of PV modules in climates with high average annual ambient temperatures was -1.35% to -1.46% per year; however, PV manufacturers currently claim degradation rates of up to -0.5% per year.

Keywords

References

  1. European Photovoltaic Industry Association (EPIA), 2011, "Global market outlook for photovoltaics until 2015", http://mait.camins.cat/ET2050_library/docs/tech/energy/EPIA_Outlook_for_Photovoltaics_2015.pdf.
  2. Short, W., Packey, D. J., and Holt, T., 1995, "A manual for the economic evaluation of energy efficiency and renewable energy technologies (No. NREL/TP-462-5173)", National Renewable Energy Lab., Golden, CO (United States).
  3. Jordan, D., 2011, "Methods of analysis of outdoor performance data", National Renewable Energy Laboratory, https://core.ac.uk/download/pdf/193937916.pdf.
  4. Laronde, R., Charki, A., and Bigaud, D., 2010, "Reliability of photovoltaic modules based on climatic measurement data", Int. J. Metrol. Qual. Eng., 1(1), 45-49. https://doi.org/10.1051/ijmqe/2010012
  5. Charki, A., Laronde, R., and Bigaud, D., 2013, "The time-variant degradation of a photovoltaic system", J. Sol. Energy Eng., 135(2), 024503. https://doi.org/10.1115/1.4007771
  6. Quintana, M.A., King, D.L., McMahon, T.J., and Osterwald, C.R., 2002, "Commonly observed degradation in field-aged photovoltaic modules", Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp. 1436-1439.
  7. Osterwald, C.R., Anderberg, A., Rummel, S., and Ottoson, L., 2002, "Degradation analysis of weathered crystalline-silicon PV modules", Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp. 1392-1395.
  8. Jordan, D.C., and Kurtz, S.R., 2013, "Photovoltaic degradation rates-an analytical review", Progress in photovoltaics: Research and Applications, 21(1), 12-29.
  9. Skoczek, A., Sample, T., and Dunlop, E.D., 2009, "The results of performance measurements of field-aged crystalline silicon photovoltaic modules", Progress in Photovoltaics: Research and applications, 17(4), 227-240.
  10. Tiwari, G. N., and Dubey, S., 2009, "Fundamentals of photovoltaic modules and their applications", Royal Society of Chemistry.
  11. Morita, K., Inoue, T., Kato, H., Tsuda, I., and Hishikawa, Y., 2003, "Degradation factor analysis of crystalline-Si PV modules through long-term field exposure test", Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2, pp. 1948-1951.
  12. Javed, K., Ashfaq, H., Singh, R., Hussain, S. M., and Ustun, T.S., 2019, "Design and performance analysis of a stand-alone PV system with hybrid energy storage for rural India", Electronics, 8(9), 952. https://doi.org/10.3390/electronics8090952
  13. Bouaichi, A., Merrouni, A.A., Hajjaj, C., Zitouni, H., Ghennioui, A., El Amrani, A., and Messaoudi, C., 2019, "In-situ inspection and measurement of degradation mechanisms for crystalline and thin film PV systems under harsh climatic conditions", Energy Procedia, 157, 1210-1219. https://doi.org/10.1016/j.egypro.2018.11.287
  14. Ascencio-Vasquez, J., Kaaya, I., Brecl, K., Weiss, K. A., and Topic, M., 2019, "Global climate data processing and mapping of degradation mechanisms and degradation rates of PV modules", Energies, 12(24), 4749. https://doi.org/10.3390/en12244749
  15. Martin-Martinez, S., Canas-Carreton, M., Honrubia-Escribano, A., and Gomez-Lazaro, E. J. E. C., 2019, "Performance evaluation of large solar photovoltaic power plants in Spain", Energy Convers. Manag., 183, 515-528. https://doi.org/10.1016/j.enconman.2018.12.116
  16. Lovati, M., Salvalai, G., Fratus, G., Maturi, L., Albatici, R., and Moser, D., 2019, "New method for the early design of BIPV with electric storage: A case study in northern Italy", Sustain. Cities Soc., 48, 101400. https://doi.org/10.1016/j.scs.2018.12.028
  17. Singh, R., Sharma, M., Rawat, R., and Banerjee, C., 2020, "Field Analysis of three different silicon-based Technologies in Composite Climate Condition-Part II-Seasonal assessment and performance degradation rates using statistical tools", Renew. Energy, 147, 2102-2117. https://doi.org/10.1016/j.renene.2019.10.015
  18. Gaglia, A.G., Lykoudis, S., Argiriou, A.A., Balaras, C.A., and Dialynas, E., 2017, "Energy efficiency of PV panels under real outdoor conditions-An experimental assessment in Athens, Greece", Renew. Energy, 101, 236-243. https://doi.org/10.1016/j.renene.2016.08.051
  19. Jurasz, J.K., Dabek, P.B., and Campana, P.E., 2020, "Can a city reach energy self-sufficiency by means of rooftop photovoltaics? Case study from Poland", J. Clean. Prod., 245, 118813. https://doi.org/10.1016/j.jclepro.2019.118813
  20. Chandel, S. S., Naik, M. N., Sharma, V., and Chandel, R., 2015, "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India", Renew. Energy, 78, 193-202. https://doi.org/10.1016/j.renene.2015.01.015
  21. Thotakura, S., Kondamudi, S.C., Xavier, J.F., Quanjin, M., Reddy, G.R., Gangwar, P., and Davuluri, S. L., 2020, "Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India", Case Stud. Therm. Eng., 18, 100602. https://doi.org/10.1016/j.csite.2020.100602
  22. Tongsopit, S., Junlakarn, S., Wibulpolprasert, W., Chaianong, A., Kokchang, P., and Hoang, N.V., 2019, "The economics of solar PV self-consumption in Thailand", Renew. Energy, 138, 395-408. https://doi.org/10.1016/j.renene.2019.01.087
  23. Dechthummarong, C., Wiengmoon, B., Chenvidhya, D., Jivacate, C., and Kirtikara, K., 2010, "Physical deterioration of encapsulation and electrical insulation properties of PV modules after long-term operation in Thailand", Sol. Energy Mater. Sol. Cells, 94(9), 1437-1440. https://doi.org/10.1016/j.solmat.2010.03.038
  24. Park, J.H., Lee, H.D., Tae, D.H., Ferreira, M., and Rho, D.S., 2019, "A Study on disposal diagnosis algorithm of PV modules considering performance degradation rate", J. Korea Acad. Industr. Coop. Soc., 20(10), 493-502. https://doi.org/10.5762/KAIS.2019.20.10.493
  25. Teah, H.S., Yang, Q., Onuki, M., and Teah, H.Y., 2019, "Incorporating external effects into project sustainability assessments: The case of a green campus initiative based on a solar PV system", Sustainability, 11(20), 5786. https://doi.org/10.3390/su11205786
  26. Jordan, D.C., Deline, C., Deceglie, M., Silverman, T.J., and Luo, W., 2019, "PV Degradation-Mounting & Temperature", Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), pp. 0673-0679.
  27. Dhimish, M., and Alrashidi, A., 2020, "Photovoltaic degradation rate affected by different weather conditions: A case study based on PV systems in the UK and Australia", Electronics, 9(4), 650. https://doi.org/10.3390/electronics9040650
  28. Han, C., Park, N., and Jeong, J., 2012, "Lifetime prediction of silicon PV module ribbon wire in three local weathers", In Photovoltaic Module Reliability Workshop, Golden, Colorado, USA.
  29. Liu, M., Lu, W., Yu, X., Wang, X., Li, X., Yao, S., and Guo, Q., 2019, "Mechanism of Degradation rate on the irradiated double-polysilicon Self-aligned bipolar transistor", Electronics, 8(6), 657. https://doi.org/10.3390/electronics8060657
  30. Kyprianou, A., Phinikarides, A., Makrides, G., and Georghiou, G.E., 2015, "Definition and computation of the degradation rates of photovoltaic systems of different technologies with robust principal component analysis", IEEE J. Photovolt., 5(6), 1698-1705. https://doi.org/10.1109/JPHOTOV.2015.2478065
  31. Kawai, S., Tanahashi, T., Fukumoto, Y., Tamai, F., Masuda, A., and Kondo, M., 2017, "Causes of degradation identified by the extended thermal cycling test on commercially available crystalline silicon photovoltaic modules", IEEE J. Photovolt., 7(6), 1511-1518. https://doi.org/10.1109/JPHOTOV.2017.2741102
  32. Jordan, D.C., Kurtz, S.R., VanSant, K., and Newmiller, J., 2016, "Compendium of photovoltaic degradation rates", Progress in Photovoltaics: Research and Applications, 24(7), 978-989.
  33. Lannoy, A., and Procaccia, H., 2005, "Evaluation et maitrise du vieillissement industriel", Lavoisier.
  34. Wohlgemuth, J.H., Cunningham, D.W., Monus, P., Miller, J., and Nguyen, A., 2006, "Long term reliability of photovoltaic modules", Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, pp.2050-2053.
  35. Osterwald, C.R., and McMahon, T.J., 2009, "History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review", Progress in Photovoltaics: Research and Applications, 17(1), 11-33.
  36. Munoz, M.A., Alonso-Garcia, M.C., Vela, N., and Chenlo, F., 2011, "Early degradation of silicon PV modules and guaranty conditions", Solar Energy, 85(9), 2264-2274. https://doi.org/10.1016/j.solener.2011.06.011
  37. Vazquez, M., and Rey-Stolle, I., 2008, "Photovoltaic module reliability model based on field degradation studies", Progress in Photovoltaics: Research and Applications, 16(5), 419-433.
  38. Chowdhury, S., Cho, E.C., Cho, Y., Kim, Y., and Yi, J., 2020, "Analysis of cell to module loss factor for shingled PV module", New. Renew. Energy, 16(3), 1-12. https://doi.org/10.7849/ksnre.2020.0009
  39. Bosco, N., 2010, "Reliability concerns associated with PV technologies", National Renewable Energy Laboratory, http://docshare02.docshare.tips/files/13845/138456443.pdf.
  40. Wohlgemuth, J., Cunningham, D.W., Nguyen, A., Kelly, G., and Amin, D., 2010, "Failure modes of crystalline Si modules", PV Module Reliability Workshop.
  41. Kontges, M., Oreski, G., Jahn, U., Herz, M., Hacke, P., Weiss, K.A., and Tanahashi, T., "Report IEA-PVPS T13-09: 2017: Assessment of photovoltaic module failures in the field", IRENA and IEA PVPS: St. Ursen, Switzerland.
  42. Chowdhury, S., Kumar, M., Dutta, S., Park, J., Kim, J., Kim, S., Ju, M., Kim, Y., Cho, Y, Cho, E.C., and Yi, J., 2019, "High-efficiency crystalline silicon solar cells: a review", New. Renew. Energy, 15(3), 36-45. https://doi.org/10.7849/ksnre.2019.3.15.3.036
  43. Zahid, M.A., Chowdhury, S., Mallem, K., Cho, E.C., and Yi, J., 2019, "Review on the progress in building integrated photovoltaic materials and module technology", New. Renew. Energy, 15(4), 47-54. https://doi.org/10.7849/ksnre.2019.12.15.4.047
  44. Kim, D., Kim, N., Hong, W.S., Kang, H., Lee, K., and Oh, C., 2016, "Degradation of backsheets for crystalline photovoltaic modules under damp heat test", New. Renew. Energy, 12(3), 36-43. https://doi.org/10.7849/ksnre.2016.9.12.3.36
  45. Carlson, D. E., Romero, R., Willing, F., Meakin, D., Gonzalez, L., Murphy, R., Moutinho, H.R., and Al-Jassim, M., 2003, "Corrosion effects in thin-film photovoltaic modules", Progress in Photovoltaics: Research and Applications, 11(6), 377-386.
  46. Kempe, M.D., 2005, "Control of moisture ingress into photovoltaic modules", Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, pp. 503-506.
  47. Skoczek, A., Sample, T., Dunlop, E.D., and Ossenbrink, H. A., 2008, "Electrical performance results from physical stress testing of commercial PV modules to the IEC 61215 test sequence", Sol. Energy Mater. Sol. Cells, 92(12), 1593-1604. https://doi.org/10.1016/j.solmat.2008.07.008
  48. Kaplanis, S., and Kaplani, E., 2011, "Energy performance and degradation over 20 years performance of BP c-Si PV modules", Simul. Model. Pract. Th., 19(4), 1201-1211. https://doi.org/10.1016/j.simpat.2010.07.009
  49. Jansen, K.W., and Delahoy, A.E., 2003, "A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates", Thin Solid Films, 423(2), 153-160. https://doi.org/10.1016/S0040-6090(02)01020-9
  50. Oreski, G., and Wallner, G. M., 2009, "Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions", Solar Energy, 83(7), 1040-1047. https://doi.org/10.1016/j.solener.2009.01.009
  51. Kojima, T., and Yanagisawa, T., 2004, "The evaluation of accelerated test for degradation a stacked a-Si solar cell and EVA films", Sol. Energy Mater. Sol. Cells, 81(1), 119-123. https://doi.org/10.1016/j.solmat.2003.09.003
  52. Berman, D., and Faiman, D., 1997, "EVA browning and the time-dependence of I-V curve parameters on PV modules with and without mirror-enhancement in a desert environment", Sol. Energy Mater. Sol. Cells, 45(4), 401-412. https://doi.org/10.1016/S0927-0248(96)00087-6
  53. Wohlgemuth, J.H., and Kurtz, S., 2011, "Reliability testing beyond qualification as a key component in photovoltaic's progress toward grid parity", 2011 International Reliability Physics Symposium, Monterey, CA, USA, pp. 5E.3.1-5E.3.6.
  54. Kempe, M.D., 2006, "Modeling of rates of moisture ingress into photovoltaic modules", Sol. Energy Mater. Sol. Cells, 90(16), 2720-2738. https://doi.org/10.1016/j.solmat.2006.04.002
  55. Kempe, M.D., Jorgensen, G.J., Terwilliger, K.M., McMahon, T.J., Kennedy, C.E., and Borek, T.T., 2007, "Acetic acid production and glass transition concerns with ethylenevinyl acetate used in photovoltaic devices", Sol. Energy Mater. Sol. Cells, 91(4), 315-329. https://doi.org/10.1016/j.solmat.2006.10.009
  56. Kempe, M.D., 2010, "Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules", Sol. Energy Mater. Sol. Cells, 94(2), 246-253. https://doi.org/10.1016/j.solmat.2009.09.009
  57. Realini, A., 2003, "Mean time before failure of photovoltaic modules", Final Report BBW 99.0579 (MTBF Project), Federal Office for Education and Science, http://intigaia.free.fr/BDPV/Documents/rapporto%20finale%20-%20progetto%20eu%205fp%20-%20mean%20time%20before%20failure%20(mtbf)%202003.pdf.
  58. Dallas, W., Polupan, O., and Ostapenko, S., 2007, "Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers", Meas. Sci. Technol., 18(3), 852. https://doi.org/10.1088/0957-0233/18/3/038
  59. Rueland, E., Herguth, A., Trummer, A., Wansleben, S., and Fath, P., 2005, "Optical u-crack detection in combination with stability testing for in-line inspection of wafers and cells", Proceedings of 20th EU PVSEC Barcelona, 3242-3245.
  60. Schutze, M., Junghanel, M., Friedrichs, O., Wichtendahl, R., Scherff, M., Muller, J., and Wawer, P., 2011, "Investigations of potential induced degradation of silicon photovoltaic modules", Proceedings of the 26th European PV Solar Energy Conference, Hamburg, Germany.
  61. Schutze, M., Junghanel, M., Koentopp, M.B., Cwikla, S., Friedrich, S., Muller, J. W., and Wawer, P., 2011, "Laboratory study of potential induced degradation of silicon photovoltaic modules", Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, 000821-000826
  62. Pingel, S., Frank, O., Winkler, M., Daryan, S., Geipel, T., Hoehne, H., and Berghold, J., 2010, "Potential induced degradation of solar cells and panels", Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, 002817-002822.
  63. Hacke, P., Terwilliger, K., Smith, R., Glick, S., Pankow, J., Kempe, M., and Kloos, M., 2011, "System voltage potential-induced degradation mechanisms in PV modules and methods for test", Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, 000814-000820.
  64. Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M., and Mather, P., 2017, "Output-power enhancement for hot spotted polycrystalline photovoltaic solar cells", IEEE Trans. Device Mater. Rel., 18(1), 37-45. https://doi.org/10.1109/tdmr.2017.2780224
  65. Molenbroek, E., Waddington, D.W., and Emery, K. A., 1991, "Hot spot susceptibility and testing of PV modules", Proceedings of the 22th IEEE Photovoltaic Specialists Conference, Las Vegas, 547-552.
  66. Cox III, C.H., Silversmith, D.J., and Mountain, R.W., 1982, "Reduction of photovoltaic cell reverse breakdown by a peripheral bypass diode (No. DOE/ ET/ 20279-228; CONF-820906-6)", Massachusetts Inst. of Tech., Lexington (USA). Lincoln Lab.
  67. Rauschenbach, H.S., and Maiden, E.E., 1972, "Breakdown phenomena in reverse biased silicon solar cells", Proceedings of the Ninth IEEE Photovoltaic Specialists Conference, Silver Springs, FL, 1972, pp. 217-225.
  68. Mau, S., Krametz, T., Jahna, W., and Fechner, H., 2004, "Quality testing for PV-modules according to standards and performance control for supporting manufacturing", Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, pp. 7-11.
  69. El-gharbawy, A.S.A.A., 2018, "Review on corrosion in solar panels", ijSmartGrid, 2(4), 218-220.
  70. Kempe, M.D., Jorgensen, G.J., Terwilliger, K.M., McMahon, T.J., Kennedy, C.E., and Borek, T.T., 2006, "Ethylene-vinyl acetate potential problems for photovoltaic packaging", Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2, pp. 2160-2163.
  71. Kadirgan, F., 2006, "Electrochemical nano-coating processes in solar energy systems", In. J. Photoenergy, 2006(1-8).
  72. Zweibel, K., Mason, J., and Fthenakis, V., 2008, "A solar grand plan", Sci. Am., 298(1), 64-73. https://doi.org/10.1038/scientificamerican0108-64
  73. https://www.plasmatreat.com/industrial-applications/new-energies/solar-technology.html (access on 31-01-2021).
  74. Wohlgemuth, J.H., Kempe, M.D., and Miller, D.C., 2013, "Discoloration of PV encapsulants", Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)", pp. 3260-3265.
  75. BrightSpot Automation, L.L.C., and Westford, M.A., 2015, "Solar panel design factors to reduce the impact of cracked cells and the tendency for crack propagation", Presented at the 2015 NREL PV Module Reliability Workshop, Denver, CO USA.