References
- Brouwers, H.J.H. (2011). A hydration model of Portland cement using the work of Powers and Brownyard.
- Chen, W., Brouwers, H.J.H. (2007a). The hydration of slag, part 1: reaction models for alkali-activated slag, Journal of Materials Science, 42(2), 428-443. https://doi.org/10.1007/s10853-006-0873-2
- Chen, W., Brouwers, H.J.H. (2007b). The hydration of slag, part 2: reaction models for blended cement, Journal of Materials Science, 42(2), 444-464. https://doi.org/10.1007/s10853-006-0874-1
- Gawin, D., Pesavento, F., Schrefler, B.A. (2006). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. part I: hydration and hygro-thermal phenomena, International Journal for Numerical Methods in Engineering, 67(3), 299-331. https://doi.org/10.1002/nme.1615
- Haha, M.B., Le Saout, G., Winnefeld, F., Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cement and Concrete Research, 41(3), 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
- Jennings, H.M., Xi, Y. (1993). Microstructurally Based Mechanisms for Modeling Shrinkage of Cement Paste at Multiple Levels(No. CONF-9309242-1), Northwestern Univ., Evanston, IL (United States).
- Kim, H.J., Tafesse, M., Lee, H.K., Kim, H.K. (2019). Incorporation of CFBC ash in sodium silicate-activated slag system: modification of microstructures and its effect on shrinkage, Cement and Concrete Research, 123, 105771. https://doi.org/10.1016/j.cemconres.2019.05.016
- Komljenovic, M., Bascarevic, Z., Marjanovic, N., Nikolic, V. (2013). External sulfate attack on alkali-activated slag, Construction and Building Materials, 49, 31-39. https://doi.org/10.1016/j.conbuildmat.2013.08.013
- Lee, H.K., Kim, H.K. (2018). Influence of drying methods on measurement of hydration degree of hydraulic inorganic materials: 1) ordinary portland cement paste and mortar, Journal of the Korean Institute of Resources Recycling, 27(1), 92-105 [in Korean]. https://doi.org/10.7844/kirr.2018.27.1.92
- Lee, H.K., Song, K.I., Song, J., Kim, H.K. (2018). Influence of drying methods on measurement of hydration degree of hydraulic inorganic materials: 2) alkali-activated slag, Journal of the Korean Institute of Resources Recycling, 27(1), 106-117 [in Korean]. https://doi.org/10.7844/kirr.2018.27.1.106
- Lothenbach, B., Kulik, D.A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., ... Myers, R.J. (2019). Cemdata18: a chemical thermodynamic database for hydrated portland cements and alkali-activated materials, Cement and Concrete Research, 115, 472-506. https://doi.org/10.1016/j.cemconres.2018.04.018
- Lothenbach, B., Winnefeld, F. (2006). Thermodynamic modelling of the hydration of Portland cement, Cement and Concrete Research, 36(2), 209-226. https://doi.org/10.1016/j.cemconres.2005.03.001
- Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., Illikainen, M. (2018). One-part alkali-activated materials: A review, Cement and Concrete Research, 103, 21-34. https://doi.org/10.1016/j.cemconres.2017.10.001
- Myers, R.J., Bernal, S.A., Provis, J.L. (2014). A thermodynamic model for C-(N-) ASH gel: CNASH_ss. Derivation and validation, Cement and Concrete Research, 66, 27-47. https://doi.org/10.1016/j.cemconres.2014.07.005
- Myers, R.J., Lothenbach, B., Bernal, S.A., Provis, J.L. (2015). Thermodynamic modelling of alkali-activated slag cements, Applied Geochemistry, 61, 233-247. https://doi.org/10.1016/j.apgeochem.2015.06.006
- Nguyen, T.T., Waldmann, D., Bui, T.Q. (2019). Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials, Computer Methods in Applied Mechanics and Engineering, 348, 1-28. https://doi.org/10.1016/j.cma.2019.01.012
- Park, S., Abate, S.Y., Kim, H.K. (2020b). Hydration kinetics modeling of sodium silicate-activated slag: a comparative study, Construction and Building Materials, 242, 118144. https://doi.org/10.1016/j.conbuildmat.2020.118144
- Park, S., Abete, S.Y., Lee, H.K., Kim, H.K. (2020a). On the quantification of degrees of reaction and hydration of sodium silicate-activated slag cements, Materials and Structures, 53, 65. https://doi.org/10.1617/s11527-020-01505-9
- Provis, J.L., Bernal, S.A. (2014). Geopolymers and related alkali-activated materials, Annual Review of Materials Research, 44, 299-327. https://doi.org/10.1146/annurev-matsci-070813-113515
- Provis, J.L., Palomo, A., Shi, C. (2015). Advances in understanding alkali-activated materials, Cement and Concrete Research, 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013
- Richardson, I.G., Brough, A.R., Groves, G.W., Dobson, C.M. (1994). The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate(CSH) phase, Cement and Concrete Research, 24(5), 813-829. https://doi.org/10.1016/0008-8846(94)90002-7
- Thomas, J.J., Allen, A.J., Jennings, H.M. (2012). Density and water content of nanoscale solid C-S-H formed in alkali-activated slag(AAS) paste and implications for chemical shrinkage, Cement and Concrete Research, 42(2), 377-383. https://doi.org/10.1016/j.cemconres.2011.11.003
- van Deventer, J.S., San Nicolas, R., Ismail, I., Bernal, S.A., Brice, D.G., Provis, J.L. (2015). Microstructure and durability of alkali-activated materials as key parameters for standardization, Journal of Sustainable Cement-Based Materials, 4(2), 116-128. https://doi.org/10.1080/21650373.2014.979265