DOI QR코드

DOI QR Code

Effect of Microwave Plasma on Sterilization of Acidovorax citrulli Infected Watermelon Seeds

저온플라즈마(Microwave Plasma)를 활용한 Acidovorax citrulli 감염 수박종자의 살균 효과 검정

  • Kim, Sang Woo (Department of Applied Plant Sciences, Kangwon National University) ;
  • Ju, Han Jun (Department of Applied Plant Sciences, Kangwon National University) ;
  • Gwon, Byeong Heon (Department of Applied Plant Sciences, Kangwon National University) ;
  • Adhikari, Mahesh (Department of Applied Plant Sciences, Kangwon National University) ;
  • Kim, Hyun Seung (Department of Applied Plant Sciences, Kangwon National University) ;
  • Park, Mi-Ri (Cheorwon Plasma Research Institute) ;
  • Lee, Youn Su (Department of Applied Plant Sciences, Kangwon National University)
  • 김상우 (강원대학교 식물자원응용공학과) ;
  • 주한준 (강원대학교 식물자원응용공학과) ;
  • 권병헌 (강원대학교 식물자원응용공학과) ;
  • 마헤시 아드히카리 (강원대학교 식물자원응용공학과) ;
  • 김현승 (강원대학교 식물자원응용공학과) ;
  • 박미리 ((재)철원플라즈마산업기술연구원) ;
  • 이윤수 (강원대학교 식물자원응용공학과)
  • Received : 2020.11.06
  • Accepted : 2021.02.24
  • Published : 2021.03.31

Abstract

This study was conducted to check the sterilization efficacy of microwave plasma (MWP) against the watermelon seeds infected with Acidovorax citrulli 11-251. Watermelon seeds were artificially vacuum inoculated to produce A. citrulli 11-251 infected seeds. Aac ImmunoStrip and scanning electron microscope (SEM) results suggests that, seeds (coat and endosperm) were infected under the concentration of 1×107/30 min. MWP sterlization process was carried out at 50 W (3 min, 5 min, and 10 min), 80 W (3 min, 5 min, and 10 min), and 100 W (3 min, 5 min, and 10 min). According to the results, MWP sterilized the artificially inoculated seed coats by 95.96% at 80 W/10 min and seed endosperms by 100% at 100 W/10 min respectively. Although, seeds were sterlized by MWP, germination rate of seeds were low as compared to non treated (negative control) seeds. Moreover, cell membrane of A. citrulli 11-251 was damaged while observed in SEM after sterilized with MWP. Further studies regarding the appropriate sterilization condition by MWP against A. citrulli infected seeds for germination will be conducted in our next study.

본 연구에서는 마이크로웨이브 플라즈마(microwave plasma)를 이용하여 종자에 감염된 Acidovorax citrulli 11-251의 살균효과를 확인하였다. 감압처리를 통하여 수박 종자에 A. citrulli 11-251를 인공접종하여 이병 종자를 제작하였으며, Aac ImmunoStrip및 scanning electron microscope 확인 결과, 종피 및 종자 내부에 1×107/30분 처리한 조건에서 감염되었음을 확인하였다. 플라즈마 처리는 50 W (3분, 5분, 10분), 80 W (3분, 5분, 10분), 100 W (3분, 5분, 10분) 조건으로 실험 결과, 인공감염종자를 플라즈마 처리 시 대조구와 비교해보면 종피의 경우 80W/10분, 99.56%의 살균 효과를 보였고, 종자 내부는 80 W, 100W/10분, 100%의 높은 살균 효과를 보였다. 인공접종 종자를 사용하여 플라즈마 살균장치의 종자살균 효과를 확인하였다. 하지만 발아율은 무처리구보다 플라즈마 처리 시 급격히 떨어지는 것을 확인하였다. 주사전자현미경 관찰 결과, 플라즈마 처리가 A. citrulli 11-251의 세포막을 파괴하는 것을 확인하였다. 또한, A. citrulli가 접종된 수박 종자를 이용하여 플라즈마 처리 시 살균 및 발아율을 높일 수 있는 최적 조건에 대한 추가 실험이 수행될 예정이다.

Keywords

References

  1. Adhikari, B. R. and Khanal, R. 2013. Introduction to the plasma state of matter. Himalayan Phys. 4: 60-64. https://doi.org/10.3126/hj.v4i0.9430
  2. Butscher, D., Van Loon, H., Waskow, A., Rudolf von Rohr, P. and Schuppler, M. 2016. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int. J. Food Microbiol. 238: 222-232. https://doi.org/10.1016/j.ijfoodmicro.2016.09.006
  3. Demir, G. 1996. A new bacterial disease of watermelon in Turkey: bacterial fruit bloch of watermelon (Acidovorax avenae subsp. citrulli (Schaad et al.) Willems et al.). J. Turk. Phytopathol. 25: 43-49.
  4. Hamn, P. B., Spink, D. S., Clough, G. H. and Mohan, K. S. 1997. First report of bacterial of bacterial fruit blotch of watermelon in Oregon. Plant Dis. 81: 113.
  5. Hopkins, D. L., Cucuzza, J. D. and Watterson, J. C. 1996. Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Dis. 80: 529-532. https://doi.org/10.1094/PD-80-0529
  6. Hopkins, D. L., Thompson, C. M., Hilgren, J. and Lovic, B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis. 87: 1495-1499. https://doi.org/10.1094/PDIS.2003.87.12.1495
  7. Kubota, M., Hagiwara, N. and Shirakawa, T. 2012. Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment. J. Phytopathol. 160: 364-368. https://doi.org/10.1111/j.1439-0434.2012.01913.x
  8. Langston, D. B. Jr., Walcott, R. D., Gitaitis, R. D. and Sanders, F. H. Jr. 1999. First report of a fruit rot of pumpkin caused by Acidovorax avenae subsp. citrulli in Georgia. Plant Dis. 83: 199.
  9. Laroussi, M., Richardson, J. P. and Dobbs, F. C. 2002. Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl. Phys. Lett. 81: 772-774. https://doi.org/10.1063/1.1494863
  10. Latin, R. X. and Rane, K. K. 1990. Bacterial fruit blotch of watermelon in Indiana. Plant Dis. 74: 331. https://doi.org/10.1094/PD-74-0331B
  11. Lessl, J. T., Fessehaie, A. and Walcott, R. R. 2007. Colonization of female watermelon blossoms by Acidovorax avenae subsp. citrulli and the relationship between blossom inoculum dosage and seed infestation. J. Phytopathol. 155: 114-121. https://doi.org/10.1111/j.1439-0434.2007.01204.x
  12. Martin, H. L., O'Brien, R. G. and Abbott, D. V. 1999. First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Dis. 83: 965.
  13. Martin, H. L. and Harlock, C. M. 2002. First report of Acidovorax avenae subsp. citrulli as a pathogen of Gramma in Australia. Plant Dis. 86: 1406. https://doi.org/10.1094/PDIS.2002.86.12.1406A
  14. Mitra, A., Li, Y.-F., Klampfl, T. G., Shimizu, T., Jeon, J., Morfill, G. E. et al. 2014. Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol. 7: 645-653. https://doi.org/10.1007/s11947-013-1126-4
  15. Ohta, T. 2016. Plasma in agriculture. In: Cold Plasma in Food and Agriculture: Fundamentals and Applications, eds. by N. N. Misra, O. Schlutter and P. J. Cullen, pp. 205-222. Elsevier, Amsterdam, The Netherlands.
  16. Padan, E. and Schuldiner, S. 1987. Intracellular pH and membrane potential as regulators in the prokaryotic cell. J. Membr. Biol. 95: 189-198. https://doi.org/10.1007/BF01869481
  17. Patil, S., Bourke, P. and Cullen, P. J. 2016. Principles of nonthermal plasma decontamination. In: Cold Plasma in Food and Agriculture: Fundamentals and Applications, eds. by N. N. Misra, O. Schlutter and P. J. Cullen, pp. 143-177. Elsevier, Amsterdam, The Netherlands.
  18. Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76: 509-512. https://doi.org/10.1094/PD-76-0509
  19. Selcuk, M., Oksuz, L. and Basaran, P. 2008. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour. Technol. 99: 5104-5109. https://doi.org/10.1016/j.biortech.2007.09.076
  20. Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15: 172-180. https://doi.org/10.1016/j.tim.2007.02.004
  21. Somodi, G. C., Jones, J. B., Hopkins, D. L., Stall, R. E., Kucharek, T. A., Hodge, N. C. et al. 1991. Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Dis. 75: 1053-1056. https://doi.org/10.1094/PD-75-1053
  22. Song, W. Y., Kim, H. M., So, I. Y. and Kang, Y. K. 1991. Pseudomonas pseudoalcaligenes subsp. citrulli: the causal agent of bacterial fruit blotch rot on watermelon. Korean J. Plant Pathol. 7: 177-182.
  23. Sowell, G. Jr. and Schaad, N. W. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Dis. Rep. 63: 437-441.
  24. Stoffels, E., Sakiyama, Y. and Graves, D. B. 2008. Cold atmospheric plasma: charged species and their interaction with cells and tissues. IEEE Trans. Plasma Sci. 36: 1441-1457. https://doi.org/10.1109/TPS.2008.2001084
  25. The Korean Society of Plant Pathology. 2009. List of Plant Diseases in Korea. 5th ed. The Korean Society of Plant Pathology, Seoul, Korea. 119 pp.
  26. Walcott, R. R., Langston, D. B. Jr., Sanders, F. H. Jr., Gitaitis, R. D. and Flanders, J. T. 2000. Natural outbreak of a bacterial fruit rot of cantaloupe in Georgia caused by Acidovorax avenae subsp. citrulli. Plant Dis. 84: 372.
  27. Wall, G. C., Santos, V. M., Cruz, F. J., Nelson, D. A., and Cabrera, I. 1990. Outbreak of watermelon fruit blotch in the Mariana islands. Plant Dis. 74: 80.
  28. Waskow, A., Betschart, J., Butscher, D., Oberbossel, G., Kloti, D., Buttner-Mainik, A. et al. 2018. Characterization of efficiency and mechanisms of cold atmospheric pressure plasma decontamination of seeds for sprout production. Front. Microbiol. 9: 3164. https://doi.org/10.3389/fmicb.2018.03164
  29. Webb, R. E. and Goth, R. W. 1965. A seedborne bacterium isolated from watermelon. Plant Dis. Rep. 49: 818-821.