DOI QR코드

DOI QR Code

Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas

합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선

  • 박현욱 (한국기계연구원 그린동력연구실) ;
  • 이준순 (과학기술연합대학원대학교 환경에너지기계공학) ;
  • 나랑후 잠스랑 (한국기계연구원 그린동력연구실) ;
  • 오승묵 (한국기계연구원 그린동력연구실) ;
  • 김창업 (한국기계연구원 그린동력연구실) ;
  • 이용규 (한국기계연구원 그린동력연구실) ;
  • 강건용 (한국기계연구원 그린동력연구실)
  • Received : 2021.02.15
  • Accepted : 2021.03.10
  • Published : 2021.03.31

Abstract

Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

Keywords

References

  1. M. Fiore, V. Magi, and A. Viggiano. "Internal combustion engines powered by syngas: A review", Applied Energy, Vol. 276, 2020, 115415. https://doi.org/10.1016/j.apenergy.2020.115415
  2. J. Ren, J. P. Cao, X. Y. Zhao, F. L. Yang, and X. Y. Wei, "Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical model", Renewable and Sustainable Energy Reviews, Vol. 116, 2019, 109426. https://doi.org/10.1016/j.rser.2019.109426
  3. S. Martinez, G. Michaux, P. Salagnac, and J. L. Bouvier, "Micro-combined heat and power systems (micro-CHP) based on renewable energy sources", Energy Conversion and Management, Vol. 154, 2017, pp. 262-285. https://doi.org/10.1016/j.enconman.2017.10.035
  4. X. Kan, D. Zhou, W. Yang, X. Zhai, and C. H. Wang, "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine", Applied energy, Vol. 212, 2018, pp. 210-222. https://doi.org/10.1016/j.apenergy.2017.12.037
  5. 이준순, 정탄, 이용규, 김창업, 오승묵, "합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성", 한국액체미립화학회지, Vol. 24, No. 1, 2019, pp. 35-42. https://doi.org/10.15435/jilasskr.2019.24.1.35
  6. B. B. Sahoo, N. Sahoo, and U. K. Saha, "Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation," Applied Thermal Engineering, Vol. 49, 2012, pp. 139-146. https://doi.org/10.1016/j.applthermaleng.2011.08.021
  7. C. A. Rinaldini, G. Allesina, S. Pedrazzi, E. Mattarelli, T. Savioli, N. Morselli, M. Puglia, and P. Tartarini, "Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas," Energy Conversion and Management, Vol. 138, 2017, pp. 526-537. https://doi.org/10.1016/j.enconman.2017.02.034
  8. Y. Yamasaki and S. Kaneko, "Prediction of ignition and combustion development in an HCCI engine fueled by syngas," SAE Technical Paper, 2014, No. 2014-32-0002.
  9. S. Bhaduri, B. Berger, M. Pochet, H. Jeanmart, and F. Contino, "HCCI engine operated with unscrubbed biomass syngas", Fuel Processing Technology, Vol. 157, 2017, pp. 52-58. https://doi.org/10.1016/j.fuproc.2016.10.011
  10. H. Enomoto and K. Saito, "Effects of the hydrogen and methane fractions in biosyngas on the stability of a small reciprocated internal combustion engine", Energy, Vol. 213, 2020, 118518. https://doi.org/10.1016/j.energy.2020.118518
  11. A. S. Bika, L. Franklin, and D. B. Kittelson, "Engine knock and combustion characteristics of a spark ignition engine operating with varying hydrogen and carbon monoxide proportions. International journal of hydrogen energy, Vol. 36, No. 8, 2011, pp. 5143-5152. https://doi.org/10.1016/j.ijhydene.2011.01.039
  12. S. Oh, C. Kim, Y. Lee, S. Yoon, J. Lee, and J. Kim, "Experimental investigation of the hydrogen-rich off-gas spark ignition engine under the various compression ratios", Energy Conversion and Management, Vol. 201, 2019, 112136. https://doi.org/10.1016/j.enconman.2019.112136
  13. J. Arroyo, F. Moreno, M. Munoz, C. Monne, and N. Bernal, "Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas", Fuel, Vol. 117, 2014, pp. 50-58. https://doi.org/10.1016/j.fuel.2013.09.055
  14. Z. Ran, D. Hariharan, B. Lawler, and S. Mamalis, "Exploring the potential of ethanol, CNG, and syngas as fuels for lean spark-ignition combustion-An experimental study", Energy, Vol. 191, 2020, 116520. https://doi.org/10.1016/j.energy.2019.116520
  15. H. Park, E. Shim, and C. Bae, "Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations," Fuel, Vol. 235, 2019, pp. 763-774. https://doi.org/10.1016/j.fuel.2018.08.045
  16. H. Park, E. Shim, and C. Bae, "Expansion of low-load operating range by mixture stratification in a natural gas-diesel dual-fuel premixed charge compression ignition engine," Energy Conversion and Management, Vol. 194, 2019, pp. 186-198. https://doi.org/10.1016/j.enconman.2019.04.085
  17. 박현욱, 이준순, 오승묵, 김창업, 이용규, 강건용, "천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석," 한국분무공학회지, Vol. 25, No. 4, 2020, pp. 1-8.
  18. F. Ma, S. Ding, Y. Wang, Y. Wang, J. Wang, and S. Zhao, "Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas SI engine with hydrogen enrichment", International Journal of Hydrogen Energy, Vol. 33, No. 23, 2008, pp. 7245-7255. https://doi.org/10.1016/j.ijhydene.2008.09.016
  19. J. B. Heywood, "Internal combustion engine fundamentals Second Edition", McGraw-Hill, Chapter 11. Pollutant Formation and Control, 2018.