References
- Abdi, H., Hejazi, F., Jaafar, M.S. and Karim, I.A. (2016), "Evaluation of response modification factor for steel structures with soft story retrofitted by viscous damper device", Advan. Struct. Eng., 19(8), 1275-1288. https://doi.org/10.1177/1369433216642036.
- Abou-Elfath, H. and Elhout, E. (2018a), "Evaluating the response modification factors of RC frames designed with different geometric configurations", Int. J. Civil Eng., 16(12), 1699-1711. https://doi.org/10.1007/s40999-018-0322-z.
- Abou-Elfath, H., Fahmy, A.S. and Khalifa, K.M. (2018b), "Response modification factors of buckling-restrained braced frames designed according to the Egyptian code", Alexandria Eng. J., 57(4), 2851-2864. https://doi.org/10.1016/j.aej.2018.07.001.
- Arslan, M.H., Ceylan, M., Kaltakci, Y.M., Ozbay, Y. and Gulay, F. G. (2007), "Prediction of force reduction factor (R) of prefabricated industrial buildings using neural networks", Struct. Eng. Mech., 27(2), 117-134. https://doi.org/10.12989/sem.2007.27.2.117.
- ASCE 41-13 (2013), Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers, Reston, U.S.A.
- ASCE 7-10 (2010), Minimum design loads for buildings and other structures, American Society of Civil Engineers; Reston, U.S.A.
- ATC-19 (1995), Structural response modification factors, Applied Technology Council; Redwood, U.S.A.
- ATC-34 (1995), A critical review of current approaches to earthquake-resistant design, Applied Technology Council; Redwood, U.S.A.
- ATC-40 (1996), Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, Redwood, U.S.A.
- Bhosale, A., Davis, R. and Sarkar, P. (2018), "New Seismic Vulnerability Index for Vertically Irregular Buildings", ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Eng., 4(3), 04018022. https://doi.org/10.1061/AJRUA6.0000973.
- Bhosale, A.S., Davis, R. and Sarkar, P. (2017), "Vertical irregularity of buildings: Regularity index versus seismic risk", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 3(3), 04017001. https://doi.org/10.1061/ajrua6.0000900
- Ceylan, M., Arslan, M. H., Ceylan, R., Kaltakci, M. Y., and Ozbay, Y. (2010), "A new application area of ANN and ANFIS: determination of earthquake load reduction factor of prefabricated industrial buildings", Civil Eng. Environ. Syst., 27(1), 53-69. https://doi.org/10.1080/10286600802506726.
- Chaulagain, H., Rodrigues, H., Spacone, E., Guragain, R., Mallik, R. and Varum, H. (2014), "Response reduction factor of irregular RC buildings in Kathmandu valley", Earthq. Eng. Eng. Vibration, 13(3), 455-470. https://doi.org/10.1007/s11803-014-0255-8.
- Computer and Structures Inc. (2016), SAP2000, Analysis reference manual, Berkeley, U.S.A.
- COSMOS (Consortium of Organizations for Strong Motion Observation Systems) (2020), https://strongmotioncenter.org/vdc/scripts/earthquakes.plx.
- Dhir, P.K., Davis, R. and Sarkar, P. (2018), "Safety assessment of gravity load-designed reinforced concrete-framed buildings", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 4(2), 04018004. https://doi.org/10.1061/AJRUA6.0000955.
- Di Sarno, L. (2013), "Effects of multiple earthquakes on inelastic structural response", Eng. Struct., 56, 673-681. https://doi.org/10.1016/j.engstruct.2013.05.041.
- Earthquake Disaster Risk Index Report (2019), A publication of the National Disaster Management Authority, Government of India, National Disaster Management Authority; New Delhi, India.
- ECP-201 (2012), Egyptian code for calculating loads and forces in structural work and masonry, Housing and Building National Research Center; Cairo, Egypt.
- ECP-203 (2007), Egyptian code of practice for design and construction of concrete structures, Research Center for Housing and Construction; Cairo, Egypt.
- Eurocode 8 (2004), Design of structures for earthquake resistance, Part 1: General rules, seismic actions, and rules for buildings, European Committee for Standardization; Brussels, Belgium.
- FEMA 273 (1997), NEHRP guidelines for the seismic rehabilitation of buildings, Federal Emergency Management Agency; Washington DC, U.S.A.
- FEMA 356 (2000), Prestandard and commentary for the seismic rehabilitation of buildings, Federal Emergency Management Agency; Washington DC, U.S.A.
- Gautham, A. and Krishna, K.G. (2017), "Fragility Analysis-A Tool to Assess Seismic Performance of Structural Systems", Materials Today: Proceedings, 4(9), 10565-10569. https://doi.org/10.1016/j.matpr.2017.06.421.
- Ghassemieh, M. and Kargarmoakhar, R. (2013), "Response modification factor of steel frames utilizing shape memory alloys", J. Intel. Mater. Syst. Struct., 24(10), 1213-1225. https://doi.org/10.1177/1045389X12471869.
- Habibi, A., Gholami, R. and Izadpanah, M. (2019), "Behavior factor of vertically irregular RCMRFs based on incremental dynamic analysis", Earthq. Struct., 16(6), 655-664. https://doi.org/10.12989/eas.2019.16.6.655.
- Haselton, C.B., Baker, J.W., Liel, A. and Deierlein, G.G. (2009), "Accounting for ground-motion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon", J. Struct. Eng., 137(3), 332-344. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000103.
- Hatzigeorgiou, G.D. and Beskos, D.E. (2009), "Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes", Eng. Struct., 31(11), 2744-2755. https://doi.org/10.1016/j.engstruct.2009.07.002.
- Hatzigeorgiou, G.D. and Liolios, A.A. (2010), "Nonlinear behaviour of RC frames under repeated strong ground motions", Soil Dyn. Earthq. Eng., 30(10), 1010-1025. https://doi.org/10.1016/j.soildyn.2010.04.013.
- Hatzivassiliou, M. and Hatzigeorgiou, G.D. (2015), "Seismic sequence effects on three-dimensional reinforced concrete buildings", Soil Dyn. Earthq. Eng., 72, 77-88. https://doi.org/10.1016/j.soildyn.2015.02.005.
- Hosseinpour, F. and Abdelnaby, A.E. (2017), "Fragility curves for RC frames under multiple earthquakes", Soil Dyn. Earthq. Eng., 98, 222-234. https://doi.org/10.1016/j.soildyn.2017.04.013.
- IS 1893 (2016), Criteria for earthquake resistance design of structures - Part 1, Bureau of Indian Standards; New Delhi, India.
- IS 456 (2000), Plain and reinforced concrete - code of practice, Bureau of Indian Standards; New Delhi, India.
- Kamaludin, P.N.C., Kassem, M.M., Farsangi, E.N., Nazri, F.M., and Yamaguchi, E. (2020), "Seismic resilience evaluation of RC-MRFs equipped with passive damping devices", Earthq. Struct., 18(3), 391-405. https://doi.org/10.12989/eas.2020.18.3.391
- Kassem, M.M., Nazri, F.M. and Farsangi, E.N. (2020a), "On the quantification of collapse margin of a retrofitted university building in Beirut using a probabilistic approach", Eng. Sci. Technol. Int. J., 23(2), 373-381. https://doi.org/10.1016/j.jestch.2019.05.003.
- Kassem, M.M., Nazri, F.M. and Farsangi, E.N. (2020b), "The seismic vulnerability assessment methodologies: A state-of-the-art review", Ain Shams Eng. J., https://doi.org/10.1016/j.asej.2020.04.001.
- Kassem, M.M., Nazri, F.M., Wei, L.J., Tan, C.G., Shahidan, S. and Zuki, S.S.M. (2019), "Seismic fragility assessment for moment-resisting concrete frame with setback under repeated earthquakes", Asian J. Civil Eng., 20(3), 465-477. https://doi.org/10.1007/s42107-019-00119-z.
- Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
- Maniyar, M., Khare, R.K. and Dhakal, R.P. (2009), "Probabilistic seismic performance evaluation of non-seismic RC frame buildings", Struct. Eng. Mech., 33, 725-745. https://doi.org/10.12989/sem.2009.33.6.725.
- Miranda, E. and Bertero, V.V. (1994), "Evaluation of strength reduction factors for earthquake-resistant design", Earthq. Spectra, 10(2), 357-379. https://doi.org/10.1193%2F1.1585778. https://doi.org/10.1193%2F1.1585778
- Mondal, A., Ghosh, S. and Reddy, G.R. (2013), "Performance-based evaluation of the response reduction factor for ductile RC frames", Eng. Struc., 56, 1808-1819. https://doi.org/10.1016/j.engstruct.2013.07.038.
- Mwafy, A.M. and Elnashai, A.S. (2002), "Calibration of force reduction factors of RC buildings", J. Earthq. Eng., 6(02), 239-273. https://doi.org/10.1142/S1363246902000723.
- Newmark, N.M. and Hall, W.J. (1982), "Earthquake spectra and design monograph series", Earthquake Engineering Research Institute, Berkeley, California, U.S.A.
- Oggu, P. and Gopikrishna, K. (2020), "Assessment of three-dimensional RC moment-resisting frames under repeated earthquakes", Struct. 26, 6-23. https://doi.org/10.1016/j.istruc.2020.03.039.
- Oggu, P., Gopikrishna, K. and Sewaiwar, S. (2020), "Seismic assessment of existing gravity load-designed RC framed building: a case study from Warangal, India", SN Appl. Sci., 2, 945. https://doi.org/10.1007/s42452-020-2690-7.
- Oggu, P., Pithadiya, M. and Gopikrishna K. (2019), "Influence of Real Ground Motion Records in Performance Assessment of RC Buildings", Int. J. Eng., 32(12), 1745-1752. https://doi.org/10.5829/ije.2019.32.12c.07.
- PEER (Pacific Earthquake Engineering Research Centre) (2020), Strong motion database. https://ngawest2.berkeley.edu/site.
- SeismoSoft SeismoMatch (2020), www.seismosoft.com.
- Sharifi, S. and Toopchi-Nezhad, H. (2018), "Seismic response modification factor of RC-frame structures based on limit state design", Int. J. Civil Eng., 16(9), 1185-1200. https://doi.org/10.1007/s40999-017-0276-6.
- Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Div., 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
- Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra, 20(2), 523-553. https://doi.org/10.1193/1.1737737.
- Varadharajan, S., Sehgal, V.K. and Saini, B. (2012), "Review of different structural irregularities in buildings", J. Struct. Eng., 39(5), 393-418.
- Varadharajan, S., Sehgal, V.K. and Saini, B. (2013), "Determination of inelastic seismic demands of RC moment resisting setback frames", Archives Civil Mech. Eng., 13(3), 370-393. https://doi.org/10.1016/j.acme.2013.02.006.
- Zhang, Y., Jun, C. and Chaoxu, S. (2017), "Damage-based strength reduction factor for nonlinear structures subjected to sequence-type ground motions", Soil Dyn. Earthq. Eng., 92, 298-311. https://doi.org/10.1016/j.soildyn.2016.10.002.