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The important challenge in the livestock industry is reproductive losses, which 
can lead to economic losses. This issue has led researchers to find strategies to 
improve reproductive efficiency. One of the strategies is the microbiomes that are 
involved in the physiological functions of the host. This study focused on the mi-
crobiota in the gut and vaginas. The microbiota in the reproductive tracts has an 
intimate relationship with reproduction because the bacteria communities can af-
fect reproductive health and fertility [1]. Vaginal delivery in human studies has 
shown a positive effect on developing a newborn’s immune system as the bacteria 
pass through the vaginas, promoting the transmission of maternal microbiota [2]. 
The high diversity of bacteria as a dysbiosis can affect the establishment and 
maintenance of pregnancy [3]. This is because the metabolites produced by the 
bacterial community can affect the host and hormone production [4] and regula-
tion [5]. For example, chemical reactions through the intestinal stimulation, such 
as stress, affect the bacterial communities, and its metabolites may induce hor-
mone release [6]. In addition, the gut microbiota can degrade hormones and alter 
gene expression in the host, leading to reproductive improvement [7]. Several 
studies reported that dysbiosis in the intestinal tract increased the risk associated 
with various health issues, including inflammatory bowel disease and obesity [8]. 
Despite many studies on the significance of the bacterial communities on the re-

The reproductive tracts have an intimate relationship with reproduction because there 
are bacterial communities that can affect reproductive health. The differences in the 
bacterial community of periparturient dairy cows were investigated. Vaginal and fecal 
samples were collected seven days before and after calving, and DNA was extracted to 
sequence the V3-V4 regions of the 16S rRNA genes. In the postpartum vaginas, oper-
ational taxonomic units, Chao1, Shannon, and Simpson were decreased, and phyla Fu-
sobacteria and Bacteroidetes were increased. In summary, bacterial abundance can af-
fect the periparturient biological differences in dairy cows, suggesting a susceptibility 
to infection within one week after calving.

Keywords: vagina; feces; microbiota; prepartum; postpartum

Short Communication



https://doi.org/10.14405/kjvr.2021.61.e2

Korean J Vet Res 2021;61(1):e2  •  Jun-Kyu Son, et al.

2 / 6

productive tract, including humans, there have been few cattle 
studies. In particular, studies on changing the microbial diver-
sity in vaginas are still in their infancy. Therefore, this study 
characterized the microbial diversity in the vaginas and feces of 
dairy cows and the differences between pre and postpartum.

All experiments involving animals were conducted using the 
approved animal care protocols from the Animal Care Commit-
tee Institutional Animal Care and Use Committee of the Nation-
al Institute of Animal Science, Rural Development Administra-
tion, Republic of Korea (approval number: NIAS-2019107). 
Three prepartum Holstein multiparous cows (42 ±  13.2 months 
old) were used for the experiments. All cows were moved at day-
21 before expected calving to one pen and were fed a diet once 
daily. The cows received a typical close-up diet total mixed ra-
tion (13 kg DM/cow/day, crude protein, 11.1%; neutral deter-
gent fiber, 48.2%; acid detergent fiber, 26.9%; calcium, 0.4%; 
phosphorus, 0.15%). Water was available ad libitum. All the 
samples were collected on day seven before calving (PRE) and 
day seven after calving (POST), and the differences in bacterial 
communities were analyzed. Both vaginas and fecal samples 
were collected using cotton swabs. For vagina sampling, the 
vulvar area was totally cleaned with water and then decontami-
nated with 70% (vol/vol) ethyl alcohol before sampling. A 
stainless steel collector fitted sterilized cotton-tipped swab cov-
ered with a sleeve (A.I/E.T Sanitary sheaths, L =  533 mm, 21”, 
IMV Technologies, France) to minimize contamination was in-
serted mildly into the vaginas, and a sample was collected from 
the vaginal wall. The samples were placed immediately in the 
tube (Swab Collection and Preservation System, Cat. No. 45670, 
Norgen, Biotek Corp., Canada) containing preservatives. Fecal 
samples were taken from the rectum after vaginal sampling and 

placed in 50 mL conical tubes. All the samples were stored in a 
-80°C freezer for further analysis. 

For metagenomics, DNA was extracted using the PowerSoil® 
DNA Isolation Kit (Cat. No. 12888; MO BIO, USA) according 
to the manufacturer’s protocol. The extracted DNA was further 
sequenced, processed, and analyzed by Macrogen (Macrogen 
Inc., Korea). The V3-V4 regions of the 16S rRNA gene were 
amplified by PCR using the primers containing an ILMN pre-
adapter + sequencing primer + specific locus primer: V3 
(5′-TCGTCGGCAGCGTC + AGATGTGTATAAGAGACAG 
+ CCTACGGGNGGCWGCAG-3 ′ ;  for ward) and V4 
(5′-GTCTCGTGGGCTCGGA + GATGTGTATAAGAGA-
CAGG + ACTACHVGGGTATCTAATCC-3′; reverse). The fil-
tered reads were clustered as operational taxonomic unit (OTU) 
sequences at 97% similarity using the CD-HIT-out. Chimeric se-
quences were identified and removed using rDnaTools. The se-
quences were classified using the Ribosomal Database Project. 

Statistical analyses of the biodiversity and bacterial commu-
nity were performed with samples at an even sequence depth. 

The mean Shannon and Simpson indices and the relative 
abundance of the bacterial communities (phyla and genera lev-
els) were compared using a t-test in SAS (SAS version 9.4; SAS 
Institute Inc., USA) to determine the significant differences be-
tween the PRE and POST dairy cows. A p-value of <  0.05 com-
pared to the PRE group was considered significant. 

Sequencing of the 16S rRNA genes produced 84,371 and 
71,857 reads in the vaginal and fecal samples, respectively, and 
it was rarefied across samples to the lowest sample depth. The 
OTUs, Chao1, Shannon, and Simpson, which are the microbial 
community richness and evenness as representative indices, 
showed highly diverse microbial diversity except for the vagi-

Table 1. Alpha-diversity of the vaginal and fecal microbiota using 16S rRNA gene sequence

Items PRE POST p-value
Vaginas
  Number of OTUs 610 ±  26.5 37.3 ±  1.70* <  0.01
  Chao1 660 ±  33.9 38.8 ±  1.31* <  0.01
  Shannon 7.39 ±  0.41 2.45 ±  0.40* <  0.01
  Simpson 0.982 ±  0.01 0.725 ±  0.07* 0.030
  Good's coverage 0.999 ±  0.002 1.00 ±  0.0001 0.102
Feces
  Number of OTUs 513.0 ±  29.7 554.0 ±  34.7 0.274
  Chao1 590.5 ±  42.0 650.0 ±  36.4 0.203
  Shannon 7.21 ±  0.12 7.18 ±  0.19 0.847
  Simpson 0.986 ±  0.001 0.986 ±  0.002 0.918
  Good's coverage 0.992 ±  0.004 0.994 ±  0.001 0.499

PRE, one week before calving; POST, one week after calving; OTU, operational taxonomic unit. 
*p < 0.05 compared with control group.
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nas of the POST dairy cows (Table 1). The OTUs (610 ±  26.5 
vs. 37.3 ±  1.70), Chao1 (660 ±  33.9 vs. 38.8 ±  1.31), Shannon 
(7.39 ±  0.41 vs. 2.45 ±  0.40), and Simpson (0.982 ±  0.01 vs. 
0.725 ±  0.07) in the vaginas of the POST dairy cows were sig-
nificantly lower than in the PRE cows. In contrast, in the feces, 
Chao1 ( ≥  513.0), Shannon ( ≥  7.18), and Simpson ( ≥  0.986) 
showed highly diverse microbial communities regardless of the 
sampling period. Taxonomic analysis of the reads revealed six 
main phyla (relative abundance ≥  1%) from the vaginas of the 
PRE dairy cows: Bacteroidetes (27.3 ±  3.95), Firmicutes (47.2 ±  
3.46), Tenericutes (2.42 ±  1.69), Proteobacteria (6.37 ±  3.88), 
Actinobacteria (6.79 ±  7.89), and Verrucomicrobia (2.03 ±  
1.04) (Table 2). On the other hand, the relative abundance and 
composition of these predominant phyla showed a difference 
from the vaginas of the POST dairy cows. Five main phyla 
from the vaginas of POST dairy cows included Fusobacteria 
(41.4 ±  3.07), Bacteroidetes (46.5 ±  5.81), Firmicutes (7.60 ±  
2.18), Tenericutes (1.98 ±  1.39), and Proteobacteria (1.69 ±  
1.79). In particular, in the postpartum vaginas, the relative 
abundance of Fusobacteria (0 vs. 41.4 ±  3.07) and Bacteroidetes 
(27.3 ±  3.95 vs. 46.5 ±  5.81) increased dramatically, and Fir-
micutes (47.2 ±  3.46 vs. 7.60 ±  2.18) decreased. Taxonomic 
analysis revealed 17 and seven main genera from the vaginas of 
the PRE and POST dairy cows, respectively (Table 3). Fusobac-
terium and Sneathia, as phylum Fusobacteria, and Bacteroides 
and Prophyromonas, as phylum Bacteroidetes, increased in the 

vaginas of the POST dairy cows, whereas Alistipes and Paludi-
bacter, as phylum Bacteroidetes, and Intestinimonas, Papilli-
bacter, Pseudoflavonifractor, and Flintibacter, as phylum Firmic-
utes, decreased in the vaginas of the POST dairy cows. Taxo-
nomic analysis of the reads revealed six main phyla from the 
feces of PRE and POST dairy cows except Lentisphaerae in 
POST dairy cows. Taxonomic analysis presented 16 main gen-
era from feces of PRE dairy cows and 22 main genera from fe-
ces of POST dairy cows, but there was no significant difference 
(Table 4). 

The most abundant bacterial phyla in the vaginas identified, 
regardless of sampling time, were Firmicutes, Bacteroidetes, Act-
inobacteria, Proteobacteria, Tenericutes, and Verrucomicrobia, 
which concurs with these being the dominant phyla in both pre 
and postpartum vaginal communities, except for Fusobacteria. 
Clemmons et al. [9] also reported that the dominant bacteria in 
the vaginas were the same, except for Fusobacteria. These phyla 
in the vaginas are most commonly in host-microbiome rela-
tionships in many species, and the ratios and relative abun-
dance are correlated with the changes in host physiology [5,10]. 
The mechanisms that describe these relationships are not well 
characterized, but there is a clear relationship between the host 
phenotype and the existence, abundance, and diversity of sev-
eral bacterial communities [5]. Increases of the phyla Fusobac-
teria and Bacteroidetes are commonly associated with bovine 
necrotic vulvovaginitis [11]. Bicalho et al. [12] reported that a 

Table 2. Impact of pre and postpartum on bacterial communities in vaginas and feces of dairy cows at the phylum level (relative abundance 
> 1%)

Items PRE POST p-value
Vaginas
  Fusobacteria 0.00 41.4 ±  3.07* <  0.01
  Bacteroidetes 27.3 ±  3.95 46.5 ±  5.81* 0.02
  Firmicutes 47.2 ±  3.46 7.60 ±  2.18* <  0.01
  Tenericutes 2.42 ±  1.69 1.98 ±  1.39 0.79
  Proteobacteria 6.37 ±  3.88 1.69 ±  1.79 0.22
  Actinobacteria 6.79 ±  7.89 0.84 ±  0.33 0.40
  Verrucomicrobia 2.03 ±  1.04 0.00 0.11
  Others 7.89 ±  2.21 0.01 ±  0.01* 0.04
Feces
  Bacteroidetes 44.8 ±  2.87 44.3 ±  2.56 0.87
  Firmicutes 36.5 ±  2.48 39.8 ±  3.68 0.36
  Proteobacteria 2.99 ±  0.50 3.02 ±  1.02 0.97
  Verrucomicrobia 2.81 ±  0.36 2.13 ±  1.07 0.47
  Spirochaetes 2.63 ±  0.79 2.62 ±  1.50 0.99
  Lentisphaerae 1.22 ±  0.33 0.71 ±  0.13 0.14
  Others 9.06 ±  0.99 7.41 ±  0.47 0.13

PRE, one week before calving; POST, one week after calving.
*p < 0.05 compared with control group.
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Overall, these results suggest that an intravaginal infection 
can occur within one week after calving, but it does not affect 
the microbial composition of feces in pre and postpartum. In 
addition, the data support the hypothesis that the bacterial 
communities in vaginas can be altered through dietary control, 
which will be tested in a future study. Despite these results, re-
search on the vaginal bacterial community is still lacking, and 
identifying the correlation between vaginal microbial changes 
and calf health will be important in future studies.
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decrease in the immunity of cows after calving might result in 
dysbiosis, and opportunistic bacteria, such as Fusobacteria and 
Bacteroidetes, which can grow and contribute to infection. The 
Fusobacteria was an unintended result, but the presence of Fu-
sobacterial infection, which was not detected in prepartum, 
was notable in this study. A previous study reported that Fuso-
bacteria originate in the feces and may susceptibly infect the 
postpartum vaginas [12]. Fusobacteria were detected in the fe-
ces regardless of pre and postpartum, suggesting that Fusobac-
teria may be an unknown external infection, not necessarily a 
fecal infection. 

Accumulated data has suggested that the composition of fe-
cal microbiota contributes to feed, environmental, and animal 
factors [13,14]. Changes in the bacterial community affect the 
production of metabolites, which in turn affects the host 
through complex interactions between the central nervous sys-
tem [15]. In the current study, although the same diet was pro-
vided regardless of pre and postpartum to reduce the effect of 
diet, there were no differences in the microbial diversity, re-
gardless of before and after calving. 

Table 3. Impact of pre and postpartum on vaginal bacterial communities of dairy cows at the genus level (relative abundance > 1%)

Phylum Genus PRE POST p-value
Fusobacteria Fusobacterium 0.00 39.5 ±  4.30* 0.01

Sneathia 0.00 2.76 ±  0.16* 0.04
Bacteroidetes Bacteroides 12.6 ±  2.03 26.6 ±  1.99* 0.02

Porphyromonas 0.13 ±  0.10 28.4 ±  8.73* 0.04
Alistipes 3.41 ±  0.37 0.00* 0.01
Paludibacter 2.08 ±  0.48 0.00* 0.03
Parapedobacter 1.4 ±  0.65 0.00 0.09
Paraprevotella 1.14 ±  0.85 0.00* 0.20

Proteobacteria Sphingomonas 1.29 ±  1.73 0.01 ±  0.01 0.40
Escherichia 0.09 ±  0.08 1.39 ±  1.93 0.44
Luteimonas 2.14 ±  1.92 0.16 ±  0.21 0.28

Actinobacteria Micrococcus 1.56 ±  1.58 0.05 ±  0.05 0.31
Dietzia 4.09 ±  5.45 0.02 ±  0.02 0.40

Firmicutes Intestinimonas 7.01 ±  1.79 0.00* 0.03
Staphylococcus 2.26 ±  2.57 0.01 ±  0.01 0.34
Papillibacter 6.47 ±  0.93 0.00* 0.01
Oscillibacter 1.54 ±  0.59 0.00 0.07
Streptococcus 0.65 ±  0.35 0.01 0.12
Helcococcus 0.01 ±  0.01 3.26 ±  2.20 0.17
Pseudoflavonifractor 3.17 ±  0.78 0.00* 0.03
Flintibacter 2.16 ±  0.64 0.00* 0.04

Verrucomicrobia Akkermansia 2.02 ±  1.05 0.00 0.11
Tenericutes Ureaplasma 2.38 ±  1.69 1.99 ±  1.40 0.81
Others Others 42.4 ±  4.59 5.58 ±  0.71* 0.01

PRE, one week before calving; POST, one week after calving.
*p < 0.05 compared with control group.
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