DOI QR코드

DOI QR Code

Influence of trees and associated variables on soil organic carbon: a review

  • 투고 : 2020.11.18
  • 심사 : 2021.01.01
  • 발행 : 2021.03.31

초록

The level of soil organic carbon (SOC) fluctuates in different types of forest stands: this variation can be attributed to differences in tree species, and the variables associated with soil, climate, and topographical features. The present review evaluates the level of SOC in different types of forest stands to determine the factors responsible for the observed variation. Mixed stands have the highest amount of SOC, while coniferous (both deciduous-coniferous and evergreen-coniferous) stands have greater SOC concentrations than deciduous (broadleaved) and evergreen (broadleaved) tree stands. There was a significant negative correlation between SOC and mean annual temperature (MAT) and sand composition, in all types of forest stands. In contrast, the silt fraction has a positive correlation with SOC, in all types of tree stands. Variation in SOC under different types of forest stands in different landscapes can be due to differences in MAT, and the sand and silt fraction of soil apart from the type of forests.

키워드

참고문헌

  1. Adekunle UAJ, Alo AA, Adekayode FO. Yields and nutrient pools in soils cultivated with Tectona grandis and Gmelina arborea in Nigerian rainforest ecosystem. J Saudi Soc Agric Sci. 2011:127-35. https://doi.org/10.1016/j.jssas.2011.05.001.
  2. Ali A, Ashraf MI, Gulzar S, Akmal M, Ahmad B. Estimation of soil carbon pools in the forests of Khyber Pakhtunkhwa Province, Pakistan. J Forest Res. 2019. https://doi.org/10.1007/s11676-019-01059-9.
  3. Andivia E, Rolo V, Jonard M, Formanek P, Ponette Q. Tree species identity mediate mechanisms of top soil carbon sequestration in a Norway spruce and European beech mixed forest. Ann Forest Sci. 2016;73:437-47. https://doi.org/10.1007/s13595-015-0536-z.
  4. Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev. 2015;90:444-66. https://doi.org/10.1111/brv.12119
  5. Ayele T, Beyene S, Esayas A. Changes in land uses on soil physicochemical properties: the case of smallholders fruit-based land used systems in Arba Minch, Southern Ethiopia. Int Curr Res. 2013;5:3203-10.
  6. Batjes NH. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use Manage. 2016;25:124-7. https://doi.org/10.1111/j.1475-2743.2009.00202.x
  7. Beinroth FH, Eswaran H, Palmieri F, Reich PF. Properties, classification and management of Oxisols. In: Soil management collaborative research support program Washington; 1996. p. 1-40.
  8. Berger TW, Neubauer C, Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecol Manag. 2002;159:3-14. https://doi.org/10.1016/S0378-1127(01)00705-8
  9. Binkley D. The influence of tree species on forest soils: processes and patterns: Special publication-Agronomy Society of New Zealand; 1995. p. 1-34.
  10. Blonska E, Lasota J, Gruda P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. Soil Sci Plant Nutr. 2017;63:242-7. https://doi.org/10.1080/00380768.2017.1326281.
  11. Calvode AR, Luis E, Febrero-Bande M, Galinanes J, Macias F, Ortiz R, Casas F. Soil organic carbon in peninsular Spain: Influence of environmental factors and spatial distribution. Geoderma. 2020;370:114365. https://doi.org/10.1016/j.geoderma.2020.114365.
  12. Chae HM, Cha S, Lee SH, Choi MJ, Shim JK. Age-related decomposition of Quercus mongolica branches. Plant Ecol. 2016;217:945-57. https://doi.org/10.1007/s11258-016-0620-y.
  13. Chandra LR, Gupta S, Pande V, Singh N. Impact of forest vegetation on soil characteristics: a correlation between soil biological and physic-chemical properties. 3Biotech. 2016;6:188. https://doi.org/10.1007/s13205-016-0510-y.
  14. Chapin F III. Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot. 2003;91:455-63. https://doi.org/10.1093/aob/mcg041
  15. Chen F, Song N, Chen G, Wang J. Effects of exotic species Larix kaemferi on diversity and activity of soil microorganisms in Dalaoling National Forest Park. Ecol Proc. 2015;4:10. https://doi.org/10.1186/s13717-015-0037-x.
  16. Day PR. Particle fractionation and particle-size analysis. In: Black CA, editor. Methods of soil analysis. Madison: American Society of Agronomy; 1965. p. 545-67.
  17. DeVos B, Lettens S, Muys S, Muys B, Deckers JA. Walkley-Black analysis of forest soil organic carbon:recovery, limitations and uncertainty. Soil Use Manage. 2007;23:221-9. https://doi.org/10.1111/j.1475-2743.2007.00084.x
  18. Driessen P. Lecture notes on the major soils of the world: set 5: Cambisols. Rome: FAO; 2001. p. 1-5.
  19. Edmondson JL, OSullivan OS, Inger R, Inger R, Potter J, McHugh N, Gaston KJ, Leake JR. Urban tree effects on soil organic carbon. PLoS ONE. 2014;9:e101872. https://doi.org/10.1371/journal.pone.0101872.
  20. Eswaran H, Reich PF, Beinroth FH, Padmanabhan E, Moncharoen P. Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA, editors. Global climate change and pedogenic carbonates. Boca Raton: Lewis Publishers; 2000. p. 15-26.
  21. FAO, ITPS. Status of the world's soil resources-technical summary. Rome: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils; 2015.
  22. Finzi AC, Van Breemen N, Canham CD. Canopy tree soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl. 1998;8:440-6. https://doi.org/10.1890/1051-0761(1998)008[0440:CTSIWT]2.0.CO;2
  23. Fry DL, Stevens JT, Potter AT, Collins BM, Stephens SL. Surface fuel accumulation and decomposition in old growth pine mixed conifer forests, northwestern Mexico. Fire Ecol. 2018;14:6. https://doi.org/10.1186/s42408-018-0017-5.
  24. Galeote GMA, Trigalet S, VanWesemael B. Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient. Geoderma. 2015;249-250:69-78. https://doi.org/10.1016/j.geoderma.2015.03.007
  25. Gruba P, Socha J, Blonska E, Lasota J. Effect of variable soil texture metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forests soils in Poland. Sci Total Environ. 2015;521-522:90-100. https://doi.org/10.1016/j.scitotenv.2015.03.100
  26. Guedes BS, Olsson BA, Karltun E. Effects of 34 year old Pinus taeda and Eucalyptus grandis plantations on soil carbon and nutrient status in former miombo forest soils. Global Ecol Conserv. 2016;8:190-202. https://doi.org/10.1016/j.gecco.2016.09.005
  27. Heckman K, Campbell J, Powers H, Law B, Swanston C. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA. Fire Ecol. 2013;9:40-57. https://doi.org/10.4996/fireecology.0902040.
  28. Hong S, Gan P, Chen A. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environ Res. 2019;172:159-65. https://doi.org/10.1016/j.envres.2019.02.020.
  29. Huang YH, Hung CY, Lin I, Kume T, Menyailo OV, Cheng CH. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation and litterfall. Botan Stud. 2017;58:49. https://doi.org/10.1186/s40529-017-0205-7.
  30. Ikhajeagbe B, Ogwu MC, Lawrence AE. Single-tree influence of Tectona grandis Linn. f. on plant distribution and soil characteristics in a planted forest. Bull Nat Res Centre. 2020;44:29. https://doi.org/10.1186/s42269-020-00285-0.
  31. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. How strongly can forest management influence soil carbon sequestration? Geoderma. 2007;137:253-68. https://doi.org/10.1016/j.geoderma.2006.09.003
  32. Janzen HH. The soil carbon dilemma: Shall we hoard it or use it? Soil Biol Biochem. 2006;38:419-24. https://doi.org/10.1016/j.soilbio.2005.10.008
  33. Kasa G, Molla E, Abiyu A. Effects of Eucalyptus tree plantations on soil seed bank and soil physicochemical properties of Qimbaba forest. Cogent Food Agric. 2019;5:1711297. https://doi.org/10.1080/23311932.2019.1711297.
  34. Kooijman AM, VanMourik JM, Shilder ML. The relationship between N mineralization or microbial biomass N with micromorphological properties in beech forest soils with different texyure and pH. Biol Fertil Soils. 2009;45:449-59. https://doi.org/10.1007/s00374-009-0354-2.
  35. Koutika LS, Nyogi S, Cafiero L, Bevivino A. Soil organic matter quality along rotations in acacia and eucalypt plantations in the Congolese Coastal Plains. Forest Ecosys. 2019;6:39. https://doi.org/10.1186/s40663-019-0197-8.
  36. Kutsch WL, Persson T, Schrumpf M, Moyano FE, Mund M, Anderson S, Schulz ED. Heterotrophic soil respiration and soil carbon dynamics in the deciduous Hainich forest obtained by three approaches. Biogeochemistry. 2010;100:167-83. https://doi.org/10.1007/s10533-010-9414-9.
  37. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123:1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
  38. Lal R, Kimble J, Levine E, Whitman C. World soils and greenhouse effect: an overview. In: Lal R, Kimble JM, Levine E, Stewart BA, editors. Soils and global change. Boca Raton: CRC press; 1995. p. 1-7.
  39. Lee EP, Lee SI, Jeong HM, Han YS, Lee SY, Park JH, Jang RH, Hong YS, Jung YH, Kim EJ, Lee SH, You YH. Valuation of ecosystem services in the organic carbon of the Pinus densiflora forest at Mt. Namson, Seoul Metropolitan city. J Ecol Environ. 2019;43:35. https://doi.org/10.1186/s41610-019-0136-1.
  40. Lin YT, Hu H, Whitman WB, Coleman DC, Chiu C. Comparison of soil bacterial communities in a natural hardwood forest and coniferous plantations in perhumid subtropical low mountains. Botan Stud. 2014;55:50. https://doi.org/10.1186/s40529-014-0050-x.
  41. Liu M, Sui X, Hu Y, Feng F. Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. BMC Microbiol. 2019;19:218. https://doi.org/10.1186/s12866-019-1584-6.
  42. Liu MY, Chang QR, Qi YB, Liu J, Chen T. Aggregation and soil organic carbon fractions under different landuses on the tableland of the Loess Plateau of China. Catena. 2014;115:19-28. https://doi.org/10.1016/j.catena.2013.11.002.
  43. Liu Y, Li S, Su X, Yu X. Variations of forest soil organic carbon and its influencing factors in east China. Ann Forest Sci. 2016;73:501-11. https://doi.org/10.1007/s13595-016-0543-8
  44. Lukina NV, Tikhonova EV, Danilova MA, Bakhmet ON, Kryshen AM, Tebenkova DN, Kuznetsova AI, et al. Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. Forest Ecosys. 2019;6:34. https://doi.org/10.1186/s40663-019-0190-2.
  45. Mandal G, Joshi SP. Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon valley, Western Himalaya, India. J Asia Pac Bioderv. 2014;7:292-304. https://doi.org/10.1016/j.japb.2014.07.006.
  46. Margesin R, Minerbi S, Schinner F. Litter decomposition at two forest sites in the Italian alps: a field study. Arctic Antarctic Alpine Res. 2016;48:127-38. https://doi.org/10.1657/AAAR0015.012.
  47. Marler TE, Dongeol N, Cruz GN. Leucaena leucocephala and adjacent native limestone forest habitats contrast in soil properties on Tinial island. Commun Integr Biol. 2016;9:e1212792. https://doi.org/10.1080/19420889.2016.1212792.
  48. Matteucci M, Gruening C, Ballarin IG, Seufert G, Cescatti A. Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest. Soil Biol Biochem. 2015;88:224-35. https://doi.org/10.1016/j.soilbio.2015.05.017.
  49. Mayer M, Prescott ECM, Abaker WEA, Augusto L, Cecillon L, Ferreira GW, et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecol Manag. 2020;466:118127. https://doi.org/10.1016/j.foreco.2020.118127.
  50. McBratney AB, Stockmann U, Angers DA, Minasny B, Field DJ. Challenges for soil organic carbon research. In: Hartemink AE, McSweeney K, editors. Soil carbon progress in soil science. Switzerland: Springer International Publishing; 2014. p. 1-14. https://doi.org/10.1007/978-3-319-04084-4-1.
  51. Meena A, Hanif M, Dinakaran J, Rao KS. Soil moisture controls the spatiotemporal pattern of soil respiration under different landuse systems in a semi-arid ecosystem of Delhi, India. Ecol Process. 2020;9:15. https://doi.org/10.1186/s13717-020-0218-0.
  52. Miao W, LaiYe QU, KeMing MA, Xiu Y. Soil microbial properties under different vegetation types on mountain Han. Sci Chin Life Sci. 2013;56:561-70. https://doi.org/10.1007/s11427-013-4486-0.
  53. Miller WP, Miller MD. A micro-pipette method for soil mechanical analysis. Commun Soil Sci Plant Anal. 1987;18:1-15. https://doi.org/10.1080/00103628709367799
  54. Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM. The ecological engineering impact of a single tree species on the soil microbial community. J Ecol. 2010;98:50-61. https://doi.org/10.1111/j.1365-2745.2009.01601.x
  55. Moslehi M, Habashi H, Khormali F, Ahmadi A, Brunner I, Zimmermann S. Base cation dynamics in rainfall, throughfall, litterflow and soil solution under Oriental beech (Fagus Orientalis Lipsky) trees in northern Iran. Ann Forest Sci. 2019;76:55. https://doi.org/10.1007/s13595-019-0837-8.
  56. Oostra S, Majdi H, Olson M. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scand J Forest Res. 2006;21:354-71.
  57. Ouyang S, Xiang W, Gou M, Lei P, Chen L, Deng X, Zhao Z. Variations in soil carbon, nitrogen, phosphorus and stoichiometry along forest succession in southern China. Biogeosci Discuss. 2017. https://doi.org/10.5194/bg-2017-408.
  58. Owen JS, King HB, Wang MK, Sun HL. Net nitrogen mineralization and nitrification rates in forest soil in northeastern Taiwan. Soil Sci Plant Nutr. 2010;56:177-85. https://doi.org/10.1111/j.1747-0765.2009.00427.x.
  59. Panda T. Role of fungi in litter decomposition associated with Casuarina equisetifolia L. plantations in coastal sand dunes, Orissa India. Int Biodiv Sci Ecosys Serv Manag. 2020;6:52-60. https://doi.org/10.1080/21513732.2020-517443.
  60. Riestra D, Noellemeyer E, Quiroga A. Soil texture and forest condition. The effect of afforestation on soil quality parameters. Soil Sci. 2012;177:279-87. https://doi.org/10.1097/SS.0b013e318245d0fe
  61. Riha SJ, James BR, Senesac GP, Pallant E. Spatial variability of soil pH and organic matter in forest plantations. Soil Sci Soc Am J. 1986;50:1347-52. https://doi.org/10.2136/sssaj1986.03615995005000050053x
  62. Saiz G, Bird MI, Domingues T, Schrodt F, Schwarz M, Feldpausch TR, Veenendaal E, Djagbletey G, Hien F, Compaore H, et al. Variation in soil carbon stocks and their determinants across a precipitation gradient in west Africa. Glob Change Biol. 2012;18:1670-83. https://doi.org/10.1111/j.1365-2486.2012.02657.x
  63. Shedayi AA, Xu M, Naseer I, Khan B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. SpringerPlus. 2016;5:320. https://doi.org/10.1186/s40064-016-1935-9.
  64. Sheikh MA, Kumar M, Bussmann R. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaved temperate forests in Garhwal Himalaya. Carbon Bal Manag. 2009;4:6. https://doi.org/10.1185/1750-0680-4-6.
  65. Sheng Y, Cong J, Lee H, Yang L, Liu Q, Li D, Zhang Y. Broad leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiol Open. 2019;8:e874. https://doi.org/10.1002/mbo3784.
  66. Shi Y, Baumann F, Ma Y, Song C, Uhn PK, Scholten T, He JS. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences. 2012;9:2287-99. https://doi.org/10.5194/bg-9-2287-2012
  67. Si Y, Xiong LI, Chen Y, Zhu J, Xie J, Gao R, Yang Y. Contribution of the vertical movement of dissolved organic carbon to carbon allocation in two distinct soil types under Castanopsis fargesii Franch and C. carlesii (Hemsl.), Hayata forests. Ann Forest Sci. 2018;75:-79. https://doi.org/10.1007/s13595-018-0756-0.
  68. Singh B, Sharma KN. Tree growth and nutrient status of soil in a Poplar (Populus deltoides Bartr.)-based agroforestry system in Punjab, India. Agroforest Sys. 2007;70:125-34. https://doi.org/10.1007/s10457-007-9048-7
  69. Stanek M, Piechnik KL, Stefanowiez AM. Invasive red oak (Quercus rubra L.) modifies soil physicochemical properties and forest understory vegetation. Forest Ecol Manag. 2020;472:118253. https://doi.org/10.1016/j.foreco.2020.118253.
  70. Suaze J, Jones SP, Wingate L, Wohl S, Ogee J. The role of soil pH on soil carbonic anhydrase activity. Biogeosci Discuss. 2017. https://doi.org/10.5194/bg-2017-214.
  71. Sugihara S, Fujimori Y, Shibata M, Sawada K, Tanaka H, Mvondoze AD, Araki S, Kosaki T, Funakawa S. Effects of 3-year cultivation on the soil nutrient status in a tropical forest and savanna of central Africa as determined by the microbial response to substrate addition. Soil Sci Plant Nutr. 2018;64:728-35. https://doi.org/10.1080/00380760.2018.1517585.
  72. Sugihara S, Shibata M, Mvondoze AD, Araki S, Funakawa S. Effect of vegetation on soil C, N, P and other minerals in Oxisols at the forest savanna transitions zone of central Africa. Soil Sci Plant Nutr. 2014;60:45-59. https://doi.org/10.1080/00380768.2013.866523.
  73. Sugihara S, Shibata M, Mvondo-Ze AD, Araki S, Kosaki T, Funakawa S. Soil phosphorus of stable fraction differentially associate with carbon in the tropical forest and savanna of eastern Cameroon. Soil Sci Plant Nutr. 2017;63:616-27. https://doi.org/10.1080/00380768.2017.1403841.
  74. Sun P, Zhuge Y, Zhang J, Cai Z. Soil pH was the main controlling factor of the denitrification rates and N2/N20 emission ratios in forest and grasslands soils along the Northern China Transect (NeCT). Soil Sci Plant Nutr. 2012;58:517-25. https://doi.org/10.1080/00380768.2012.703609.
  75. Sun X, Tang Z, Ryan MG, You Y, Sun OJ. Changes in soil organic carbon contents and fractionation of forests along a climatic gradient in China. Forest Ecosys. 2019;6:1. https://doi.org/10.1186/s40663-019-0161-7.
  76. Takahashi M, Hirai K, Limtong P, Chaveevan L, Panuthai S, Suksawang S, Somchai A, Marod D. Topographic variation in heterotrophic and autotrophic soil respiration in a tropical seasonal forest in Thailand. Soil Sci Plant Nutr. 2011;57:452-65. https://doi.org/10.1080/00380768.2011.589363.
  77. Tellen VA, Yerima BPK. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environ Sys Res. 2018;7:3. https://doi.org/10.1186/s40068-018-0106-0.
  78. Thomaz EL. Realistic soil-heating gradient temperature linearly changes most of the soil chemical properties. Soil Sci Plant Nutr. 2017;63:84-91. https://doi.org/10.1080/00380768.2016.1255538.
  79. Tiessen H, Stewart JWB. Particle size fractions and their use in studies of soil organic matter: II cultivation effect on organic matter composition in size fractions. Soil Sci Soc Am J. 1983;47:509-14. https://doi.org/10.2136/sssaj1983.03615995004700030023x
  80. Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P. Do tree species influence soil carbon stocks in temperate and boreal forest? Forest Ecol Manag. 2013;309:4-18. https://doi.org/10.1016/j.foreco.2013.01.017
  81. Vesterdal L, Schmidt IK, Callesen IC, Nilsson LO, Gundersen P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecol Manag. 2008;255:35-48. https://doi.org/10.1016/j.foreco.2007.08.015
  82. Walkley A. A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and inorganic soil constituents. Soil Sci. 1947;63:251-64. https://doi.org/10.1097/00010694-194704000-00001
  83. Walter K, Don A, Tiemeyer B, Freibauer A. Determining soil bulk density for carbon stock calculations: a systematic method comparison. Soil Sci Soc Am J. 2016;80:579. https://doi.org/10.2136/ssaj2015.11.0407.
  84. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ. Land use, land use change and forestry. Cambridge: Cambridge University Press; 2000. p. 375.
  85. Weber OB, DaSilva MCB, DaSilva CF, DeSouza JA, Taniguch CAK, Garruti DS, Romero RE. Biological and chemical attributes of soil under forest species in Northeast Brazil. J Forest Res. 2019;31:1959-73. https://doi.org/10.1007/s11676-019-00982-1.
  86. Weemstra M, Sterck FJ, Visser EJW, Kyper TW, Goudzwaard L, Mommer L. Fine-root trait plasticity of beech (Fagus sylvatica) and Spruce (Picea abies) forests on two contrasting soils. Plant Soil. 2017;415:175-88. https://doi.org/10.1007/s11104-016-3148-y.
  87. Wyse SV. Growth responses of five forest plant species to the soils formed beneath New Zealand Kauri (Agathis australis), New Zealand. J Botany. 2012;50:411421. https://doi.org/10.1080/0028825X.2012.724428.
  88. Yadava PS, Devi AS. Wood and leaf litter decomposition of Dipterocarpus tuberculatus Roxb. in a tropical deciduous forest of Manipur in North-East India. Curr Sci. 2007;9:243-6.
  89. Yam G, Tripathi OP, Das DN. Modelling of total soil carbon using readily available soil variables in temperate forest of Eastern Himalaya, Northeast India. Geol Ecol Landscapes. 2019. https://doi.org/10.1080/24749508.2019.1706295.
  90. Yang AR, Soa Y, Noh NJ, Lee SK, Jo W, Son J, Kim C, Bae S, Lee S, Kim H, Hwang J. Effect of thinning on carbon storage in soil, forest floor and coarse woody debris of Pinus densiflora stands with different stand ages in Gangwon-do, central Korea. Forest Sci Tech. 2011;7:30-7. https://doi.org/10.1080/21580103.2011.559936.
  91. Yao X, Yu K, Deng Y, Liu J, Lai Z. Spatial variability of soil organic carbon and total nitrogen in the hilly red soil region of Southern China. J Trop Res. 2019. https://doi.org/10.1007/s11676-019-01014-8.
  92. Yost LJ, Hartemink AE. Soil organic carbon in sandy soils: A review. In: Advances in Agronomy, vol. 158: Academic; 2019. p. 217-310. https://doi.org/10.1016/bs.agron.2019.07.004.
  93. You Y, Wang J, Huang X, Tang Z, Liu S, Sun OJ. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol Evol. 2014;4:633-47. https://doi.org/10.1002/ece3.969
  94. Yu Y, Shen W, Yin Y, Zhang J, Cai Z, Zhong W. Response of soil microbial diversity to land use conversion of natural forests to plantations in a subtropical mountainous area of Southern China. Soil Sci Plant Nutr. 2012;58:450-61. https://doi.org/10.1080/00380768.2012.708645.
  95. Zehetgruber B, Kobler J, Dirnbock T, Jandle R, Seidl R, Schindlbacher A. Intensive ground vegetation growth mitigates the carbon loss after forest disturbance. Plant Soil. 2017;420:239-52. https://doi.org/10.1007/s11104-017-3384-9.
  96. Zhang J, Zhang D, Jina Z, Zhou H, Zhao Y, Wei D. Litter decomposition and the degradation of recalcitrant components in Pinus massoniana plantations with various canopy densities. J Forest Res. 2019;30:1395-405. https://doi.org/10.1007/s11676-018-0715-5.
  97. Zhang X, Guo J, Vogt RD, Mulder J, Wang Y, Qian JW, Zhang X. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands. Geoderma. 2020;366:114234. https://doi.org/10.1016/j.geoderma.2020.114234.
  98. Zhong Z, Chen Z, Xu Y, Ren C, Yang G, Han X, Ren G, Feng Y. Relationship between soil organic carbon stocks and clay content under different climatic conditions in Central China forests. Forests. 2018;9:598. https://doi.org/10.3390/f9100598.
  99. Zhou L, Sun Y, Saeed S, Zhang B, Luo M. The difference of soil properties between pure and mix Chinese fir (Cunninghamia lanceolata) plantations depends on tree species. Glob Ecol Conserv. 2020;22:e01009. https://doi.org/10.1016/j.gecco.2020.e01009.
  100. Zhou W, Han G, Liu M, Li X. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. Peer J. 2019. https://doi.org/10.7717/PeerJ.7880.