References
- Agne S., Rogger M., Rohrschneider J. Benchmarking of document page segmentation //Document Recognition and Retrieval VII. - International Society for Optics and Photonics, 1999. - Т. 3967. - С. 165-171.
- Ale L., Zhang N., Li L. Road damage detection using RetinaNet //2018 IEEE International Conference on Big Data (Big Data). - IEEE, 2018. - С. 5197-5200.
- Antonacopoulos A., Ritchings R. T. Flexible page segmentation using the background //Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5). - IEEE, 1994. - Т. 2. - С. 339-344.
- Bertelli L. et al. Kernelized structural SVM learning for supervised object segmentation //CVPR 2011. - IEEE, 2011. - С. 2153-2160.
- Bradski G., Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. - " O'Reilly Media, Inc.", 2008.
- Brahmbhatt S. Practical OpenCV. - Apress, 2013.
- Cai Z. et al. A unified multi-scale deep convolutional neural network for fast object detection //European conference on computer vision. - Springer, Cham, 2016. - С. 354-370.
- Can Y. S., Kabadayi M. E. CNN-Based Page Segmentation and Object Classification for Counting Population in Ottoman Archival Documentation //Journal of Imaging. - 2020. - Т. 6. - No. 5. - С. 32. https://doi.org/10.3390/jimaging6050032
- Cattoni R. et al. Geometric layout analysistechniquesfor document image understanding: a review //ITC-irst Technical Report. - 1998. - Т. 9703. - No. 09.
- Dong J. et al. Low-level cursive word representation based on geometric decomposition //International Workshop on Machine Learning and Data Mining in Pattern Recognition. - Springer, Berlin, Heidelberg, 2005. - С. 590-599.
- Feng Z. et al. Deep retinal image segmentation: a FCN-based architecture with short and long skip connections for retinal image segmentation. //International Conference on Neural Information Processing. - Springer, Cham, 2017. - С. 713-722.
- He D. et al. Multi-scale multi-task fcn for semantic page segmentation and table detection //2017 14th IAPR International Conference on Do cument Analysis and Recognition (ICDAR). - IEEE, 2017. - Т. 1. - С. 254-261.
- Henderson P., Ferrari V. End-to-end training of object class detectors for mean average precision //Asian Conference on Computer Vision. - Springer, Cham, 2016. - С. 198-213.
- Hones F., Lichter J. Layout extraction of mixed mode documents //Machine vision and applications. - 1994. - Т. 7. - No. 4. - С. 237-246. https://doi.org/10.1007/BF01213414
- Hu H. et al. Relation networks for object detection //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. - 2018. - С. 3588-3597.
- International Conference on Neural Information Processing. - Springer, Cham, 2017. - С. 713-722.
- Jain A. K., Zhong Y. Page segmentation using texture analysis //Pattern recognition. - 1996. - Т. 29. - No. 5. - С. 743-770. https://doi.org/10.1016/0031-3203(95)00131-X
- Kisantal M. et al. Augmentation for small object detection //arXiv preprint arXiv:1902.07296. - 2019.
- Laganiere R. OpenCV Computer Vision Application Programming Cookbook Second Edition. - Packt Publishing Ltd, 2014.
- Li K. et al. A maximal figure-of-merit learning approach to maximizing mean average precision with deep neural network based classifiers //2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). - IEEE, 2014. - С. 4503-4507.
- Lin T. Y. et al. Focal loss for dense object detection //Proceedings of the IEEE international conference on computer vision. - 2017. - С. 2980-2988.
- Nagy G. Twenty years of document image analysis in PAMI //IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2000. - Т. 22. - No. 1. - С. 38-62. https://doi.org/10.1109/34.824820
- Perner P., Imiya A. (ed.). Machine Learning and Data Mining in Pattern Recognition: 4th International Conference, MLDM 2005, Leipzig, Germany, July 9-11, 2005, Proceedings. - Springer Science & Business Media, 2005. - Т. 3587.
- Randriamasy S., Vincent L. A region-based system for the automatic evaluation of page segmentation algorithms //Proceedings of the International Association for Pattern Recognition Workshop on Document Analysis Systems DAS94. - 1994. - С. 29-41.
- Review: RetinaNet - Focal Loss (Object Detection). Towards Data Science. URL: https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4 (режим доступа: 17.01.2021)
- Setitra I. et al. Text Line Segmentation in Handwritten Documents Based on Connected Components Trajectory Generation //International Conference on Pattern Recognition Applications and Methods. - Springer, Cham, 2017. - С. 222-234.
- Szegedy C., Toshev A., Erhan D. Deep neural networks for object detection //Advances in neural information processing systems. - 2013. - С. 2553-2561.
- Taheri S. et al. OpenCV. js: Computer Vision processing for the open Web platform //Proceedings of the 9th ACM Multimedia Systems Conference. - 2018. - С. 478-483.
- Wang Y. et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery //Remote Sensing. - 2019. - Т. 11. - No. 5. - С. 531. https://doi.org/10.3390/rs11050531
- Wood S. L., Marks J. P., Pearlman J. A segmentation algorithm for ocr application to low resolution images //Conference Record of the Fourteenth Asilomar Conference on Circuits, Systems and Computers. - 1980. - С. 411-415.
- Wei H. et al. Evaluation of SVM, MLP and GMM classifiers for layout analysis of historical documents //2013 12th International Conference on Document Analysis and Recognition. - IEEE, 2013. - С. 1220-1224.
- Yi X. et al. CNN based page object detection in document images //2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). - IEEE, 2017. - Т. 1. - С. 230-235.
- Zeng N. RetinaNet Explained and Demystified [Электронный ресурс]. 2018 URL: blog.zenggyu.com/en/post/2018-12-05/retinanet-explained-and-demystified
- Zhang H. et al. Cascade retinanet: Maintaining consistency for single-stage object detection //arXiv preprint arXiv:1907.06881. - 2019.
- Zou Z. et al. Object detection in 20 years: A survey //arXiv preprint arXiv:1905.05055. - 2019.