DOI QR코드

DOI QR Code

CONVERGENCE AND STABILITY OF ITERATIVE ALGORITHM OF SYSTEM OF GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSION PROBLEMS USING (𝜃, 𝜑, 𝛾)-RELAXED COCOERCIVITY

  • Received : 2021.02.08
  • Accepted : 2021.06.08
  • Published : 2021.12.15

Abstract

In this paper, we give the notion of M(., .)-𝜂-proximal mapping for a nonconvex, proper, lower semicontinuous and subdifferentiable functional on Banach space and prove its existence and Lipschitz continuity. As an application, we introduce and investigate a new system of variational-like inclusions in Banach spaces. By means of M(., .)-𝜂-proximal mapping method, we give the existence of solution for the system of variational inclusions. Further, propose an iterative algorithm for finding the approximate solution of this class of variational inclusions. Furthermore, we discuss the convergence and stability analysis of the iterative algorithm. The results presented in this paper may be further expolited to solve some more important classes of problems in this direction.

Keywords

Acknowledgement

The first author was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the Korea (2018R1D1A1B07045427).

References

  1. S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201 (1996), 609-630. https://doi.org/10.1006/jmaa.1996.0277
  2. C. Baiocchi and A. Capelo, Variational and Quasi-variational Inequalities: Applications to Free Boundary Problems, John Wiley and Sons, New York, 1984.
  3. M.I. Bhat, S. Shafi and M.A. Malik, H-mixed accretive mapping and proximal point method for solving a system of generalized set-Valued variational inclusions, Numer. Funct. Anal. Optim., (2021), DOI: https://doi.org/10.1080/01630563.2021.1933527.
  4. M.I. Bhat and B. Zahoor, Existence of solution and iterative approximation of a system of generalized variational-like inclusion problems in semi-inner product spaces, Filomat, 31:19 (2017), 6051-6070, DOI: https://doi.org/10.2298/FIL1719051B.
  5. M.I. Bhat and B. Zahoor, (H(·,·),𝜂)-monotone operators with an application to a system of set-valued variational-like inclusions in Banach spaces, Nonlinear Funct. Anal. Appl., 22(3) (2017), 673-692. https://doi.org/10.22771/NFAA.2017.22.03.14
  6. J.Y. Chen, N.C. Wong and J.C. Yao, Algorithms for generalized co-complementarity problems in Banach spaces, Comput. Math. Appl., 43 (2002), 49-54. https://doi.org/10.1016/S0898-1221(01)00270-X
  7. I. Coorenescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
  8. X.P. Ding, Perturbed proximal point algorithm for generalized quasi-variational inclusions, J. Math. Anal. Appl., 210(1) (1997), 88-101. https://doi.org/10.1006/jmaa.1997.5370
  9. X.P. Ding, Generalized quasi-variational-like inclusions with nonconvex functional, Appl. Math. Comput., 122 (2001), 267-282. https://doi.org/10.1016/S0096-3003(00)00027-8
  10. X.P. Ding and H.R. Feng, The p-step iterative algorithms for a system of generalized quasi-variational inclusions with (A, η)-accretive operators in q-uniformly smooth Banach spaces, Comput. Appl. Math., 220 (2008), 163-174. https://doi.org/10.1016/j.cam.2007.08.003
  11. X.P. Ding and C.L. Lou, Perturbed proximal point algorithms for general quasivariational-like inclusions, J. Comput. Appl. Math., 113(1-2) (2000), 153-165. https://doi.org/10.1016/S0377-0427(99)00250-2
  12. X.P. Ding and K.K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Colloq. Math., 63 (1992), 233-247. https://doi.org/10.4064/cm-63-2-233-247
  13. X.P. Ding and F.Q. Xia, A new class of completely generalized quasi-variational inclusions in Banach spaces, J. Comput. Appl. Math., 147 (2002), 369-383. https://doi.org/10.1016/S0377-0427(02)00443-0
  14. F. Giannsssi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Plenum Press, New York, 1995.
  15. R. Glownski, Numerical Methods for Nonlinear Variational Problems, Springer, Berlin, 1984.
  16. R. Glownski, J.L. Lions and R. Tremoliers, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
  17. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185(3) (1994), 706-712. https://doi.org/10.1006/jmaa.1994.1277
  18. N.J. Huang, M.R. Bai, Y.J. Cho and M.K. Shin, Generalized nonlinear mixed quasivariational inequalities, Comput. Math. Appl., 40(2-3) (2000), 205-215. https://doi.org/10.1016/S0898-1221(00)00154-1
  19. K.R. Kazmi, Mann and Ishikawa type perturbed iterative algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl., 209 (1997), 572-584. https://doi.org/10.1006/jmaa.1997.5368
  20. K.R. Kazmi and M.I. Bhat, Convergence and stability of iterative algorithms for generalized set-valued variational-like inclusions in Banach spaces, Appl. Math. Comput., 113 (2005), 153-165.
  21. K.R. Kazmi N. Ahmad and M. Shahzad, Convergence and stability of an iterative algorithm for a system of generalized implicit variational-like inclusions in Banach spaces, Appl. Math. Comput., 218 (2012), 9208-9219. https://doi.org/10.1016/j.amc.2012.02.077
  22. K.R. Kazmi, M.I. Bhat and N. Ahmad, An iterative algorithm based on M-proximal mappings for a system of generalized implicit variational inclusions in Banach spaces, J. Comput. App. Math., 233 (2009), 361-371. https://doi.org/10.1016/j.cam.2009.07.028
  23. K.R. Kazmi and F.A. Khan, Iterative approximation of a unique solution of a system of variational-like inclusions in q-uniformly smooth Banach spaces, Nonlinear Anal., 67 (2007), 917-929. https://doi.org/10.1016/j.na.2006.06.049
  24. J.K. Kim, M.I. Bhat and S. Shafi, Convergence and stability of a perturbed Mann iterative algorithm with errors for a system of generalized variational-like inclusion problems in q-uniformly smooth Banach spaces, Comm. in Math. Appl., 12(1) (2021), 29-50, DOI: 10.26713/cma.v12i1.1401.
  25. J.K. Kim and D.S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal., 11(1) (2004), 225-243.
  26. L.S. Liu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
  27. S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  28. O. Osilike, Stability for the Ishikawa iteration procedure, Indian J. Pure Appl. Math., 26(10) (1995), 937-945.
  29. W.V. Petershyn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal., 6 (1970), 282-291. https://doi.org/10.1016/0022-1236(70)90061-3
  30. J. Sun, L. Zhang and X. Xiao, An algorithm based on resolvent operators for solving variational inequalities in Hilbert spaces, Nonlinear Anal. TMA., 69(10) (2008), 3344-3357. https://doi.org/10.1016/j.na.2007.09.026
  31. R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett., 18 (2005), 1286-1292. https://doi.org/10.1016/j.aml.2005.02.026
  32. X.J. Zhou and G. Che, Diagonal convexity conditions for problems in convex analysis and quasivariational inequalities, J. Math. Anal. Appl., 132 (1998), 213-225. https://doi.org/10.1016/0022-247X(88)90054-6