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Abstract. Recently, Kim-Kim introduced Lah-Bell polynomials and numbers, and inves-

tigated some properties and identities of these polynomials and numbers. Kim studied

Lah-Bell polynomials and numbers of degenerate version. In this paper, we study degener-

ate Lah-Bell polynomials arising from differential equations. Moreover, we investigate the

phenomenon of scattering of the zeros of these polynomials.

1. Introduction

Definition 1.1. The unsigned Lah number Ln,k counts the number of ways a
set of n elements can be partioned into k nonempty linearly ordered subsets,
and have an explicit formula (see [1, 13, 15, 16, 24, 25]).

Ln,k =

(
n− 1

k − 1

)
n!

k!
=

(
n

k

)
(n− 1)!

(k − 1)!
. (1.1)
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The generating function of Ln,k is defined by (see [13, 15, 24])

1

k!

(
t

1− t

)k
=

∞∑
n=k

Ln,k
tn

n!
(k ≥ 0). (1.2)

Recently, Kim-Kim (see [13]) introduced the Lah-Bell polynomials as fol-
lows:

e
tx
1−t =

∞∑
n=0

BL
n (x)

tn

n!
. (1.3)

The degenerate exponential function is defined by (see [19–22])

exλ(t) = (1 + λt)
x
λ , eλ(t) := e1λ(t) = (1 + λt)

1
λ , (1.4)

where λ is a nonzero parameter.
Note that

lim
λ→0

exλ(t) = lim
λ→0

(1 + λt)
x
λ = ext.

Since exλ(t) defined in (1.4) is infinitely differentiable at t = 0, Taylor expansion
of exλ(t) at t = 0 gives the following series form (see [20–23]):

exλ(t) =
∞∑
n=0

(x)n,λ
tn

n!
, (1.5)

where (x)n,λ is defined by

(x)n,λ =

{
1, n = 0,(
x− (n− 1)λ

)
(x)n−1,λ, n ≥ 1.

As is well known, the Stirling numbers of the first kind are given by
(see [1–5, 10, 14])

(x)n =
n∑
l=0

S1(n, l)x
l, (1.6)

where (x)n are defined by

(x)n =

{
1, n = 0,(
x+ 1− n

)
(x)n−1, n ≥ 1.

From (1.6), we easily get

1

k!
(ln(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
. (1.7)
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As an inversion formula of (1.6), the Stirling numbers of the second kind
are given by (see [1–5, 10])

xn =
n∑
l=0

S2(n, l)(x)l. (1.8)

From (1.8), we get

1

k!

(
et − 1

)k
=
∞∑
n=k

S2(n, k)
tn

n!
. (1.9)

Moreover, as degenerate version of (1.6) and (1.8), the degenerate Stirling
numbers of the first and second kinds, respectively, are given by

(x)n =
n∑
l=0

S1,λ(n, l)(x)l,λ,

(x)n,λ =
n∑
l=0

S2,λ(n, l)(x)l

(1.10)

and
1

k!
(lnλ(1 + t))k =

∞∑
n=k

S1,λ(n, k)
tn

n!
,

1

k!
(eλ(t)− 1)k =

∞∑
n=k

S2,λ(n, k)
tn

n!
,

(1.11)

where lnλ(t) = tλ−1
λ (see [6–12, 17, 18]).

Recently, Kim-Kim (see [13]) introduced the degenerate Lah-Bell polyno-
mials which are given by the generating function to be

exλ

(
1

1− t
− 1

)
=
∞∑
n=0

BL
n,λ(x)

tn

n!
. (1.12)

The rest of this paper is organized as follows. In the section 2, we study
the differential equations on degenerate Lah-Bell polynomials. Using these
differential equations, we derive some identities and properties of the degener-
ate Lah-Bell polynomials. In the section 3, we investigate the phenomenon of
scattering of the zeros of those polynomials. Finally, in section 4, a summary
of the Lah-Bell polynomials is given.

2. Some identities of the degenerate Lah-Bell polynomial

In this section, we derive some identities of the degenerate Lah-Bell poly-
nomials. When x = 1, BL

n,λ := BL
n,λ(1) are called the degenerate Lah-Bell
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numbers. The following theorem gives an explicit expression of the Lah-Bell
polynomials.

Theorem 2.1. For non-negative integer n ≥ 0, we have

BL
n,λ(x) =

n∑
k=0

(x)k,λ Ln,k. (2.1)

Proof. Combining (1.12) and (1.5) and using the fact (1.2), one can obtain
the following relation (see [13]):

∞∑
n=0

BL
n,λ(x)

tn

n!
= exλ

(
t

1− t

)
=
∞∑
k=0

(x)k,λ
1

k!

(
t

1− t

)k

=

∞∑
k=0

(x)k,λ

∞∑
n=k

Ln,k
tn

n!

=
∞∑
n=0

(
n∑
k=0

(x)k,λLn,k

)
tn

n!
.

(2.2)

Since the set
{

1, t, t2, · · · , tn, · · ·
}

are linearly independent, the relation (2.1)
is satisfied. �

Combining Theorem 2 and the definition of Lah number (1.1), one can have
the following corollary.

Corollary 2.2. For non-negative integer n ≥ 0, we have

BL
n,λ(x) = n!

n∑
k=0

(x)k,λ
k!

(
n− 1

n− k

)
.

Proof. Substituting (1.1) into (2.1) and simplifying it, one can complete the
proof. �

The following theorem gives the relation between Lah-Bell polynomials and
the Stirling numbers of first kind.

Theorem 2.3. For non-negative integer n ≥ 0, we have

BL
n,λ(x) =

n∑
l=0

l∑
k=0

λl−kxkS1(l, k)Ln,l.

In particular, for x = 1, we have

BL
n,λ =

n∑
l=0

l∑
k=0

λl−kS1(l, k)Ln,l.
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Proof. Using (1.4) and (1.7), we get

exλ

(
t

1− t

)
=

(
1 +

λt

1− t

) x
λ

= e
x
λ
ln(1+ λt

1−t)

=

∞∑
k=0

λ−kxk

k!

(
ln

(
1 +

λt

1− t

))k

=
∞∑
k=0

λ−kxk
∞∑
l=k

S1(l, k)
λl

l!

(
t

1− t

)l

=
∞∑
k=0

λ−kxk
∞∑
l=k

S1(l, k)λl
∞∑
n=l

Ln,l
tn

n!

=
∞∑
n=0

( n∑
l=0

l∑
k=0

λl−kxkS1(l, k)Ln,l

) tn
n!
.

(2.3)

Hence, comparing Theorem 2.1 and (2.3) leads to completing of this proof. �

Theorem 2.4. For non-negative integer n ≥ 0, we have

BL
n,λ(x) =

n∑
m=0

m∑
l=0

(
l

m

)
(x)l,λ

(−1)m−l

l!
〈l〉n,

where 〈l〉n is defined by

〈l〉n =

{
1, n = 0,

(l + n− 1)〈l〉n−1, n ≥ 1.

Proof. Combining (1.4) and (1.5), we can have

∞∑
n=0

BL
n,λ(x)

tn

n!
= exλ

(
t

1− t

)

=

(
1 +

λt

1− t

) x
λ

(2.4)
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=
∞∑
l=0

(x)l,λ
1

l!

(
t

1− t

)l

=

∞∑
l=0

(x)l,λ
1

l!

l∑
m=0

(
l

m

)(
1

1− t

)m
(−1)l−m

=
∞∑
l=0

(x)l,λ
1

l!

l∑
m=0

(
l

m

) ∞∑
n=0

〈m〉n
tn

n!
(−1)l−m

=
∞∑
n=0

n∑
m=0

m∑
l=0

(
l

m

)
(x)l,λ

(−1)l−m

l!
〈m〉n

tn

n!
.

By comparing the coefficients of the both sides of (2.4), we can finish this
proof. �

Let F (t, x) be a two variable function defined by

F (t, x) :=

∞∑
n=0

BL
n,λ(x)

tn

n!
. (2.5)

Then, the k-th differentiation gives us the following:

∂k

∂tk
F (t, x) =

∂k

∂tk

( ∞∑
n=0

BL
n,λ(x)

tn

n!

)

=
∞∑
n=k

BL
n,λ(x)

tn−k

(n− k)!

=
∞∑
n=0

BL
n+k,λ(x)

tn

n!
.

(2.6)

Now, we observe that (see [16])

1

1 + λt
1−t

=
∞∑
k=0

(−1)k(λ)k
(

t

1− t

)k

=

∞∑
k=0

(−1)kλk
∞∑
n=k

(
n− 1

n− k

)
tn

=

∞∑
n=0

n!
n∑
k=0

(−1)kλk
(
n− 1

n− k

)
tn

n!

(2.7)
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and

(1− t)−2 =

∞∑
l=0

〈2〉l
tl

l!
. (2.8)

From (2.7) and (2.8), we have

∂

∂t
F (t, x)

=

(
1 +

λt

1− t

) x
λ
−1 x

(1− t)2

=

( ∞∑
l=0

BL
l,λ(x)

tl

l!

)( ∞∑
m=0

m!
m∑
k=0

(
m− 1

m− k

)
(−1)kλk

tm

m!

)x ∞∑
j=0

〈2〉j
tj

j!


=

( ∞∑
l=0

BL
l,λ(x)

tl

l!

)( ∞∑
i=0

(
i∑

m=0

m∑
k=0

(
i

m

)(
m− 1

m− k

)
m!(−1)kλkx〈2〉i−m

ti

i!

))

=
∞∑
n=0

n∑
i=0

i∑
m=0

m∑
k=0

(
n

i

)(
i

m

)(
m− 1

m− k

)
m!(−1)kλkx〈2〉i−mBL

n−i,λ(x)
tn

n!
.

(2.9)

Theorem 2.5. For any real λ and non-negative integer n ≥ 0, we have the
following recurrence relation

BL
n+1,λ(x) =

n∑
i=0

i∑
m=0

m∑
k=0

(
n

i

)(
i

m

)(
m− 1

m− k

)
m!(−1)kλkx〈2〉i−mBL

n−i,λ(x).

Proof. Combining (2.6) and (2.9), we can complete this proof. �

Now, we observe that

∂

∂x
F (t, x) =

∂

∂x

(
1 +

λt

1− t

) x
λ

=
1

λ

(
1 +

λt

1− t

) x
λ

ln

(
1 +

λt

1− t

)
.

By mathematical induction, we can obtain

∂k

∂xk
F (t, x) =

1

λk

(
1 +

λt

1− t

) x
λ
(

ln

(
1 +

λt

1− t

))k
. (2.10)
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Since (
ln

(
1 +

λt

1− t

))k
= k!

∞∑
l=k

S1(l, k)
1

l!

(
t

1− t

)l

=

∞∑
m=k

m∑
l=0

m!k!

l!
S1(l, k)

(
m− 1

l − 1

)
tm

m!
,

(2.11)

by (2.10) and (2.11), we get

∂k

∂xk
F (t, x)

=

(
1

λk

∞∑
m=k

m∑
l=0

m!k!

l!
S1(l, k)

(
m− 1

l − 1

)
tm

m!

) ∞∑
j=0

BL
j,λ(x)

tj

j!


=

∞∑
n=k

(
n−k∑
m=0

m∑
l=0

1

λk

(
n

m

)
m!k!

l!
S1(n, k)

(
m− 1

l − 1

)
BL
n−m,λ(x)

)
tn

n!
.

(2.12)

We obtain the following by k differentiations of the function F (t, x) with re-
spect to x:

∂k

∂xk
F (t, x) =

∂k

∂xk

∞∑
m=0

BL
m,λ(x)

tm

m!
=

∞∑
m=k

∂k

∂xk
BL
m,λ(x)

tm

m!
. (2.13)

Theorem 2.6. For real number λ and non-negative integers n and k with
n ≥ k, we have

∂k

∂xk
BL
n,λ(x) =

n−k∑
m=0

m∑
l=0

(
n

m

)
m!k!

l!λk
S1(n, k)

(
m− 1

l − 1

)
BL
n−m,λ(x). (2.14)

Proof. Comparing (2.12) and (2.13), one can proof the above recurrence rela-
tions. �

Theorem 2.7. For λ ∈ R and non-negative integers n, k ≥ 0, we have

dk

dxk
BL
n,λ(x) = n!

n∑
k=0

k∑
l=0

l∑
m=0

1

k!

(
n− 1

n− k

)
S2,λ(k, l)S1(l,m)(m)kx

m−k.
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Proof. Using (1.10) and Corollary 2.2, we have

dk

dxk
BL
n,λ(x) =

dk

dxk
n!

n∑
k=0

(x)k,λ
k!

(
n− 1

n− k

)

= n!
n∑
k=0

1

k!

(
n− 1

n− k

)
dk

dxk
(x)k,λ

= n!
n∑
k=0

1

k!

(
n− 1

n− k

)
dk

dxk

k∑
l=0

S2,λ(k, l)(x)l

= n!
n∑
k=0

1

k!

(
n− 1

n− k

)
dk

dxk

k∑
l=0

S2,λ(k, l)
l∑

m=0

S1(l,m)xm

= n!
n∑
k=0

1

k!

(
n− 1

n− k

) k∑
l=0

l∑
m=0

S2,λ(k, l)S1(l,m)(m)kx
m−k.

(2.15)

This is the desired result of the theorem. �

3. Distribution of roots of the polynomials

Woon [26] has studied the distribution and structure of the zeros of Bernoulli
polynomials. Hence, we will investigate the numerical patten of the zeros of
the polynomials BL

n,λ(x). Using the mathematica tool, the polynomial BL
n,λ(x)

can be determined explicitly. For example,

BL
1,λ(x) = x,

BL
2,λ(x) = x2 + (2− λ)x,

BL
3,λ(x) = x3 + (6− 3λ)x2 + (6− 6λ+ 2λ2)x,

BL
4,λ(x) = x4 + (12− 6λ)x3 + (36− 36λ+ 11λ2)x2

+ (24− 36λ+ 24λ2 − 6λ3)x.

From the definition of the Lah-Bell polynomials BL
n,λ(x), we can obtain the

following properties of the roots:

• For any real number λ, the polynomials BL
n,λ(x) with n = 1, 2 have

only real roots.
• For any real number λ and any positive integer n, all polynomials
BL
n,λ(x) have a common root which is zero.
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(a) λ = 5
10

-120 -100 -80 -60 -40 -20 0 20
-1.0

-0.5

0.0

0.5

1.0

ReHxL

I
m
H
x
L

(b) λ = 15
10

-30 -20 -10 0 10 20

-60

-40

-20

0

20

40

60

ReHxL

I
m
H
x
L

(c) λ = 20
10

-20 -10 0 10 20
-100

-50

0

50

100

ReHxL

I
m
H
x
L

(d) λ = 25
10

-20 -10 0 10 20 30

-100

-50

0

50

100

ReHxL

I
m
H
x
L

Fig. 1. The computed roots of BL
40,λ(x) with variable λ

Firstly, we observe the impact of λ on the distribution of the roots of the
polynomials. For the propose, we fix the degree of polynomials as n = 40.
Since the explicit form of the roots of BL

n,λ(x) is unknown, we calculate the
roots by using the Mathematica tool with 100 working precision. The absolute
numerical error is bounded as follows:

40∑
i=1

|B40,λ(xi)| < 10−62,

where xi denotes the root of polynomial. Hence, the results obtained from nu-
merical computations are reliable. We compute the numerical roots of BL

40,λ(x)

with four different parameters λ = 5
10 ,

15
10 ,

20
10 and 25

10 and the results are plotted
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in Fig. 1. As observed in Fig. 1, the roots of the Lah-Bell polynomials have
four patterns.

(a) λ = 5
10

-100

-50

0

ReHxL

-1.0

-0.5

0.0

0.5

1.0

ImHxL

0

10

20

30

40

n

(b) λ = 15
10

-20

0

20

ReHxL

-50

0

50

ImHxL

0

10

20

30

40

n

(c) λ = 20
10

-20

-10

0

10

20

ReHxL

-100

-50

0

50

100

ImHxL

0

10

20

30

40

n

(d) λ = 25
10

-20

0

20ReHxL

-100

-50

0

50

100

ImHxL

0

10

20

30

40

n

Fig. 2. The root distribution of BL
n,λ(x) with variable λ and

different integer n = 1, 2, · · · , 40.

Secondly, we investigate the impact of the degree of polynomials on the
distribution of roots of the polynomials. We compute the numerical roots of
the polynomials increasing the degree of polynomials from 1 to 40 and present
in Fig. 2.
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(a) λ = 5
10

-100 -80 -60 -40 -20 0
0

10

20

30

40

ReHxL

n

(b) λ = 15
10

-6 -4 -2 0 2
0

10

20

30

40

ReHxL

n

(c) λ = 20
10

-2 -1 0 1 2
0

10

20

30

40

ReHxL

n

(d) λ = 25
10

-2 0 2 4 6
0

10

20

30

40

ReHxL

n

Fig. 3. Real zeros of BL
n,λ(x) for λ = 5

10 ,
15
10 ,

20
10 ,

25
10 and 1 ≤ n ≤ 40.

Thirdly, to investigate the real roots distribution structure of BL
n,λ(x), we

compute the real roots and display in Fig.3.

-50

0

ReHxL

-50

0

50

ImHxL

0

1

2

3

Λ

Fig. 4. Roots distribution structures vs λ ∈ [0, 2510 ].
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From the results of Fig.3, we can find a remarkably regular structure of
the roots of the polynomials Bn,λ(x). In order to find the roots structure, we

count the number of real roots for λ = 5
10 ,

15
10 ,

20
10 and 25

20 and n ∈ [1, 99] within
x ∈ [−1000, 1000] and summarize as follows:

• λ = 5
10 : the number of real roots=n.

• λ = 20
10 : the number of real roots=

{
1, n = odd,

2, n = even.

• λ = 15
10 : the number of real roots=



1, n = 1, 3, · · · , 13,

2, n = 2, 4, · · · , 26,

3, n = 15, 17, · · · , 37,

4, n = 28, 30, · · · , 50,

5, n = 39, 41, · · · , 63,

6, n = 52, 54, · · · , 74,

7, n = 65, 67, · · · , 87,

8, n = 76, 78, · · · , 98,

9, n = 89, 91, · · · , 99.

• λ = 25
10 : the number of real roots=



1, n = 1, 3, · · · , 27,

2, n = 2, 4, · · · , 50,

3, n = 29, 31, · · · , 75,

4, n = 52, 54, · · · , 100,

5, n = 77, 79, · · · , 99.

Finally, we compute the roots of the polynomials with fixed n = 40 and
varying parameter λ = k

10 , k = 0, 1, · · · , 25. The numerical results are plotted
in Fig. 4.

Summering the above discussion, we can obtain the properties of the roots
of BL

n,λ(x).

• When λ < 2, the real parts of the roots of the polynomials BL
n,λ(x) are

non-positive.
• When λ = 2, the polynomials BL

n,λ(x) have pure imaginary roots ex-
cept for zero roots.
• When λ > 2, the real parts of the roots of the polynomials BL

n,λ(x) are
non-negative.
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4. Conclusion

In this paper, we review the Lah-Bell polynomials and numbers introduced
by Kim-Kim and give an explicit formula for partial derivatives. In order
to more accurate understanding the Lah-Bell polynomials, the distribution of
roots was numerically investigated. Further, we count the number of real roots
of BL

n,λ(x) with four different parameters λ = 5
10 ,

15
10 ,

20
10 and 25

10 . Finally, we

obtain the relation between the sign of real part of the root of BL
n,λ(x) and the

value λ. In the next study, we will show theoretically the above facts.

Acknowledgments: The authors would like to thank the anonymous referees
for their careful reading, valuable comments, and suggestions, which helped
to improve the manuscript.
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