# A NOTE ON DEGENERATE LAH-BELL POLYNOMIALS ARISING FROM DERIVATIVES 

Xiangfan Piao ${ }^{1}$, Yunjae Kim ${ }^{2}$ and Jongkyum Kwon ${ }^{3}$<br>${ }^{1}$ Department of Mathematics Kyungpook National University, Daegu 41566, Korea<br>e-mail: piaoxf76@hanmail.net<br>${ }^{2}$ Department of Mathematics Kyungpook National University, Daegu 41566, Korea<br>e-mail: kimholzi@gmail.com<br>${ }^{3}$ Department of Mathematics Education Gyeongsang National University, Jinju, 52828, Korea<br>e-mail: mathkjk26@gnu.ac.kr


#### Abstract

Recently, Kim-Kim introduced Lah-Bell polynomials and numbers, and investigated some properties and identities of these polynomials and numbers. Kim studied Lah-Bell polynomials and numbers of degenerate version. In this paper, we study degenerate Lah-Bell polynomials arising from differential equations. Moreover, we investigate the phenomenon of scattering of the zeros of these polynomials.


## 1. Introduction

Definition 1.1. The unsigned Lah number $L_{n, k}$ counts the number of ways a set of $n$ elements can be partioned into $k$ nonempty linearly ordered subsets, and have an explicit formula (see $[1,13,15,16,24,25]$ ).

$$
\begin{equation*}
L_{n, k}=\binom{n-1}{k-1} \frac{n!}{k!}=\binom{n}{k} \frac{(n-1)!}{(k-1)!} . \tag{1.1}
\end{equation*}
$$

[^0]The generating function of $L_{n, k}$ is defined by (see [13, 15, 24])

$$
\begin{equation*}
\frac{1}{k!}\left(\frac{t}{1-t}\right)^{k}=\sum_{n=k}^{\infty} L_{n, k} \frac{t^{n}}{n!}(k \geq 0) \tag{1.2}
\end{equation*}
$$

Recently, Kim-Kim (see [13]) introduced the Lah-Bell polynomials as follows:

$$
\begin{equation*}
e^{\frac{t x}{1-t}}=\sum_{n=0}^{\infty} B_{n}^{L}(x) \frac{t^{n}}{n!} . \tag{1.3}
\end{equation*}
$$

The degenerate exponential function is defined by (see [19-22])

$$
\begin{equation*}
e_{\lambda}^{x}(t)=(1+\lambda t)^{\frac{x}{\lambda}}, \quad e_{\lambda}(t):=e_{\lambda}^{1}(t)=(1+\lambda t)^{\frac{1}{\lambda}}, \tag{1.4}
\end{equation*}
$$

where $\lambda$ is a nonzero parameter.
Note that

$$
\lim _{\lambda \rightarrow 0} e_{\lambda}^{x}(t)=\lim _{\lambda \rightarrow 0}(1+\lambda t)^{\frac{x}{\lambda}}=e^{x t} .
$$

Since $e_{\lambda}^{x}(t)$ defined in (1.4) is infinitely differentiable at $t=0$, Taylor expansion of $e_{\lambda}^{x}(t)$ at $t=0$ gives the following series form (see [20-23]):

$$
\begin{equation*}
e_{\lambda}^{x}(t)=\sum_{n=0}^{\infty}(x)_{n, \lambda} \frac{t^{n}}{n!}, \tag{1.5}
\end{equation*}
$$

where $(x)_{n, \lambda}$ is defined by

$$
(x)_{n, \lambda}= \begin{cases}1, & n=0 \\ (x-(n-1) \lambda)(x)_{n-1, \lambda}, & n \geq 1 .\end{cases}
$$

As is well known, the Stirling numbers of the first kind are given by (see [1-5, 10, 14])

$$
\begin{equation*}
(x)_{n}=\sum_{l=0}^{n} S_{1}(n, l) x^{l}, \tag{1.6}
\end{equation*}
$$

where $(x)_{n}$ are defined by

$$
(x)_{n}= \begin{cases}1, & n=0 \\ (x+1-n)(x)_{n-1}, & n \geq 1\end{cases}
$$

From (1.6), we easily get

$$
\begin{equation*}
\frac{1}{k!}(\ln (1+t))^{k}=\sum_{n=k}^{\infty} S_{1}(n, k) \frac{t^{n}}{n!} \tag{1.7}
\end{equation*}
$$

As an inversion formula of (1.6), the Stirling numbers of the second kind are given by (see $[1-5,10]$ )

$$
\begin{equation*}
x^{n}=\sum_{l=0}^{n} S_{2}(n, l)(x)_{l} . \tag{1.8}
\end{equation*}
$$

From (1.8), we get

$$
\begin{equation*}
\frac{1}{k!}\left(e^{t}-1\right)^{k}=\sum_{n=k}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!} \tag{1.9}
\end{equation*}
$$

Moreover, as degenerate version of (1.6) and (1.8), the degenerate Stirling numbers of the first and second kinds, respectively, are given by

$$
\begin{align*}
& (x)_{n}=\sum_{l=0}^{n} S_{1, \lambda}(n, l)(x)_{l, \lambda},  \tag{1.10}\\
& (x)_{n, \lambda}=\sum_{l=0}^{n} S_{2, \lambda}(n, l)(x)_{l}
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{k!}\left(\ln _{\lambda}(1+t)\right)^{k} & =\sum_{n=k}^{\infty} S_{1, \lambda}(n, k) \frac{t^{n}}{n!}  \tag{1.11}\\
\frac{1}{k!}\left(e_{\lambda}(t)-1\right)^{k} & =\sum_{n=k}^{\infty} S_{2, \lambda}(n, k) \frac{t^{n}}{n!}
\end{align*}
$$

where $\ln _{\lambda}(t)=\frac{t^{\lambda}-1}{\lambda}($ see $[6-12,17,18])$.
Recently, Kim-Kim (see [13]) introduced the degenerate Lah-Bell polynomials which are given by the generating function to be

$$
\begin{equation*}
e_{\lambda}^{x}\left(\frac{1}{1-t}-1\right)=\sum_{n=0}^{\infty} B_{n, \lambda}^{L}(x) \frac{t^{n}}{n!} \tag{1.12}
\end{equation*}
$$

The rest of this paper is organized as follows. In the section 2 , we study the differential equations on degenerate Lah-Bell polynomials. Using these differential equations, we derive some identities and properties of the degenerate Lah-Bell polynomials. In the section 3, we investigate the phenomenon of scattering of the zeros of those polynomials. Finally, in section 4, a summary of the Lah-Bell polynomials is given.

## 2. Some identities of the degenerate Lah-Bell polynomial

In this section, we derive some identities of the degenerate Lah-Bell polynomials. When $x=1, B_{n, \lambda}^{L}:=B_{n, \lambda}^{L}(1)$ are called the degenerate Lah-Bell
numbers. The following theorem gives an explicit expression of the Lah-Bell polynomials.

Theorem 2.1. For non-negative integer $n \geq 0$, we have

$$
\begin{equation*}
B_{n, \lambda}^{L}(x)=\sum_{k=0}^{n}(x)_{k, \lambda} L_{n, k} . \tag{2.1}
\end{equation*}
$$

Proof. Combining (1.12) and (1.5) and using the fact (1.2), one can obtain the following relation (see [13]):

$$
\begin{align*}
\sum_{n=0}^{\infty} B_{n, \lambda}^{L}(x) \frac{t^{n}}{n!} & =e_{\lambda}^{x}\left(\frac{t}{1-t}\right)=\sum_{k=0}^{\infty}(x)_{k, \lambda} \frac{1}{k!}\left(\frac{t}{1-t}\right)^{k} \\
& =\sum_{k=0}^{\infty}(x)_{k, \lambda} \sum_{n=k}^{\infty} L_{n, k} \frac{t^{n}}{n!}  \tag{2.2}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(x)_{k, \lambda} L_{n, k}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Since the set $\left\{1, t, t^{2}, \cdots, t^{n}, \cdots\right\}$ are linearly independent, the relation (2.1) is satisfied.

Combining Theorem 2 and the definition of Lah number (1.1), one can have the following corollary.
Corollary 2.2. For non-negative integer $n \geq 0$, we have

$$
B_{n, \lambda}^{L}(x)=n!\sum_{k=0}^{n} \frac{(x)_{k, \lambda}}{k!}\binom{n-1}{n-k} .
$$

Proof. Substituting (1.1) into (2.1) and simplifying it, one can complete the proof.

The following theorem gives the relation between Lah-Bell polynomials and the Stirling numbers of first kind.
Theorem 2.3. For non-negative integer $n \geq 0$, we have

$$
B_{n, \lambda}^{L}(x)=\sum_{l=0}^{n} \sum_{k=0}^{l} \lambda^{l-k} x^{k} S_{1}(l, k) L_{n, l} .
$$

In particular, for $x=1$, we have

$$
B_{n, \lambda}^{L}=\sum_{l=0}^{n} \sum_{k=0}^{l} \lambda^{l-k} S_{1}(l, k) L_{n, l} .
$$

Proof. Using (1.4) and (1.7), we get

$$
\begin{align*}
e_{\lambda}^{x}\left(\frac{t}{1-t}\right) & =\left(1+\frac{\lambda t}{1-t}\right)^{\frac{x}{\lambda}} \\
& =e^{\frac{x}{\lambda} \ln \left(1+\frac{\lambda t}{1-t}\right)} \\
& =\sum_{k=0}^{\infty} \frac{\lambda^{-k} x^{k}}{k!}\left(\ln \left(1+\frac{\lambda t}{1-t}\right)\right)^{k} \\
& =\sum_{k=0}^{\infty} \lambda^{-k} x^{k} \sum_{l=k}^{\infty} S_{1}(l, k) \frac{\lambda^{l}}{l!}\left(\frac{t}{1-t}\right)^{l}  \tag{2.3}\\
& =\sum_{k=0}^{\infty} \lambda^{-k} x^{k} \sum_{l=k}^{\infty} S_{1}(l, k) \lambda^{l} \sum_{n=l}^{\infty} L_{n, l} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n} \sum_{k=0}^{l} \lambda^{l-k} x^{k} S_{1}(l, k) L_{n, l}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Hence, comparing Theorem 2.1 and (2.3) leads to completing of this proof.

Theorem 2.4. For non-negative integer $n \geq 0$, we have

$$
B_{n, \lambda}^{L}(x)=\sum_{m=0}^{n} \sum_{l=0}^{m}\binom{l}{m}(x)_{l, \lambda} \frac{(-1)^{m-l}}{l!}\langle l\rangle_{n},
$$

where $\langle l\rangle_{n}$ is defined by

$$
\langle l\rangle_{n}= \begin{cases}1, & n=0, \\ (l+n-1)\langle l\rangle_{n-1}, & n \geq 1 .\end{cases}
$$

Proof. Combining (1.4) and (1.5), we can have

$$
\begin{align*}
\sum_{n=0}^{\infty} B_{n, \lambda}^{L}(x) \frac{t^{n}}{n!} & =e_{\lambda}^{x}\left(\frac{t}{1-t}\right) \\
& =\left(1+\frac{\lambda t}{1-t}\right)^{\frac{x}{\lambda}} \tag{2.4}
\end{align*}
$$

$$
\begin{aligned}
& =\sum_{l=0}^{\infty}(x)_{l, \lambda} \frac{1}{l!}\left(\frac{t}{1-t}\right)^{l} \\
& =\sum_{l=0}^{\infty}(x)_{l, \lambda} \frac{1}{l!} \sum_{m=0}^{l}\binom{l}{m}\left(\frac{1}{1-t}\right)^{m}(-1)^{l-m} \\
& =\sum_{l=0}^{\infty}(x)_{l, \lambda} \frac{1}{l!} \sum_{m=0}^{l}\binom{l}{m} \sum_{n=0}^{\infty}\langle m\rangle_{n} \frac{t^{n}}{n!}(-1)^{l-m} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \sum_{l=0}^{m}\binom{l}{m}(x)_{l, \lambda} \frac{(-1)^{l-m}}{l!}\langle m\rangle_{n} \frac{t^{n}}{n!} .
\end{aligned}
$$

By comparing the coefficients of the both sides of (2.4), we can finish this proof.

Let $F(t, x)$ be a two variable function defined by

$$
\begin{equation*}
F(t, x):=\sum_{n=0}^{\infty} B_{n, \lambda}^{L}(x) \frac{t^{n}}{n!} . \tag{2.5}
\end{equation*}
$$

Then, the $k$-th differentiation gives us the following:

$$
\begin{align*}
\frac{\partial^{k}}{\partial t^{k}} F(t, x) & =\frac{\partial^{k}}{\partial t^{k}}\left(\sum_{n=0}^{\infty} B_{n, \lambda}^{L}(x) \frac{t^{n}}{n!}\right) \\
& =\sum_{n=k}^{\infty} B_{n, \lambda}^{L}(x) \frac{t^{n-k}}{(n-k)!}  \tag{2.6}\\
& =\sum_{n=0}^{\infty} B_{n+k, \lambda}^{L}(x) \frac{t^{n}}{n!} .
\end{align*}
$$

Now, we observe that (see [16])

$$
\begin{align*}
\frac{1}{1+\frac{\lambda t}{1-t}} & =\sum_{k=0}^{\infty}(-1)^{k}(\lambda)^{k}\left(\frac{t}{1-t}\right)^{k} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \lambda^{k} \sum_{n=k}^{\infty}\binom{n-1}{n-k} t^{n}  \tag{2.7}\\
& =\sum_{n=0}^{\infty} n!\sum_{k=0}^{n}(-1)^{k} \lambda^{k}\binom{n-1}{n-k} \frac{t^{n}}{n!}
\end{align*}
$$

and

$$
\begin{equation*}
(1-t)^{-2}=\sum_{l=0}^{\infty}\langle 2\rangle_{l} \frac{t^{l}}{l!} . \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8), we have

$$
\begin{align*}
& \frac{\partial}{\partial t} F(t, x) \\
& =\left(1+\frac{\lambda t}{1-t}\right)^{\frac{x}{\lambda}-1} \frac{x}{(1-t)^{2}} \\
& =\left(\sum_{l=0}^{\infty} B_{l, \lambda}^{L}(x) \frac{t^{l}}{l!}\right)\left(\sum_{m=0}^{\infty} m!\sum_{k=0}^{m}\binom{m-1}{m-k}(-1)^{k} \lambda^{k} \frac{t^{m}}{m!}\right)\left(x \sum_{j=0}^{\infty}\langle 2\rangle_{j} \frac{t^{j}}{j!}\right) \\
& =\left(\sum_{l=0}^{\infty} B_{l, \lambda}^{L}(x) \frac{t^{l}}{l!}\right)\left(\sum_{i=0}^{\infty}\left(\sum_{m=0}^{i} \sum_{k=0}^{m}\binom{i}{m}\binom{m-1}{m-k} m!(-1)^{k} \lambda^{k} x\langle 2\rangle_{i-m} \frac{t^{i}}{\bar{i}!}\right)\right) \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{m=0}^{i} \sum_{k=0}^{m}\binom{n}{i}\binom{i}{m}\binom{m-1}{m-k} m!(-1)^{k} \lambda^{k} x\langle 2\rangle_{i-m} B_{n-i, \lambda}^{L}(x) \frac{t^{n}}{n!} . \tag{2.9}
\end{align*}
$$

Theorem 2.5. For any real $\lambda$ and non-negative integer $n \geq 0$, we have the following recurrence relation

$$
B_{n+1, \lambda}^{L}(x)=\sum_{i=0}^{n} \sum_{m=0}^{i} \sum_{k=0}^{m}\binom{n}{i}\binom{i}{m}\binom{m-1}{m-k} m!(-1)^{k} \lambda^{k} x\langle 2\rangle_{i-m} B_{n-i, \lambda}^{L}(x) .
$$

Proof. Combining (2.6) and (2.9), we can complete this proof.

Now, we observe that

$$
\frac{\partial}{\partial x} F(t, x)=\frac{\partial}{\partial x}\left(1+\frac{\lambda t}{1-t}\right)^{\frac{x}{\lambda}}=\frac{1}{\lambda}\left(1+\frac{\lambda t}{1-t}\right)^{\frac{x}{\lambda}} \ln \left(1+\frac{\lambda t}{1-t}\right) .
$$

By mathematical induction, we can obtain

$$
\begin{equation*}
\frac{\partial^{k}}{\partial x^{k}} F(t, x)=\frac{1}{\lambda^{k}}\left(1+\frac{\lambda t}{1-t}\right)^{\frac{x}{\lambda}}\left(\ln \left(1+\frac{\lambda t}{1-t}\right)\right)^{k} . \tag{2.10}
\end{equation*}
$$

Since

$$
\begin{align*}
\left(\ln \left(1+\frac{\lambda t}{1-t}\right)\right)^{k} & =k!\sum_{l=k}^{\infty} S_{1}(l, k) \frac{1}{l!}\left(\frac{t}{1-t}\right)^{l} \\
& =\sum_{m=k}^{\infty} \sum_{l=0}^{m} \frac{m!k!}{l!} S_{1}(l, k)\binom{m-1}{l-1} \frac{t^{m}}{m!}, \tag{2.11}
\end{align*}
$$

by (2.10) and (2.11), we get

$$
\begin{align*}
& \frac{\partial^{k}}{\partial x^{k}} F(t, x) \\
& =\left(\frac{1}{\lambda^{k}} \sum_{m=k}^{\infty} \sum_{l=0}^{m} \frac{m!k!}{l!} S_{1}(l, k)\binom{m-1}{l-1} \frac{t^{m}}{m!}\right)\left(\sum_{j=0}^{\infty} B_{j, \lambda}^{L}(x) \frac{t^{j}}{j!}\right)  \tag{2.12}\\
& =\sum_{n=k}^{\infty}\left(\sum_{m=0}^{n-k} \sum_{l=0}^{m} \frac{1}{\lambda^{k}}\binom{n}{m} \frac{m!k!}{l!} S_{1}(n, k)\binom{m-1}{l-1} B_{n-m, \lambda}^{L}(x)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

We obtain the following by $k$ differentiations of the function $F(t, x)$ with respect to $x$ :

$$
\begin{equation*}
\frac{\partial^{k}}{\partial x^{k}} F(t, x)=\frac{\partial^{k}}{\partial x^{k}} \sum_{m=0}^{\infty} B_{m, \lambda}^{L}(x) \frac{t^{m}}{m!}=\sum_{m=k}^{\infty} \frac{\partial^{k}}{\partial x^{k}} B_{m, \lambda}^{L}(x) \frac{t^{m}}{m!} . \tag{2.13}
\end{equation*}
$$

Theorem 2.6. For real number $\lambda$ and non-negative integers $n$ and $k$ with $n \geq k$, we have

$$
\begin{equation*}
\frac{\partial^{k}}{\partial x^{k}} B_{n, \lambda}^{L}(x)=\sum_{m=0}^{n-k} \sum_{l=0}^{m}\binom{n}{m} \frac{m!k!}{l!\lambda^{k}} S_{1}(n, k)\binom{m-1}{l-1} B_{n-m, \lambda}^{L}(x) . \tag{2.14}
\end{equation*}
$$

Proof. Comparing (2.12) and (2.13), one can proof the above recurrence relations.

Theorem 2.7. For $\lambda \in \mathbb{R}$ and non-negative integers $n, k \geq 0$, we have

$$
\frac{d^{k}}{d x^{k}} B_{n, \lambda}^{L}(x)=n!\sum_{k=0}^{n} \sum_{l=0}^{k} \sum_{m=0}^{l} \frac{1}{k!}\binom{n-1}{n-k} S_{2, \lambda}(k, l) S_{1}(l, m)(m)_{k} x^{m-k} .
$$

Proof. Using (1.10) and Corollary 2.2, we have

$$
\begin{align*}
\frac{d^{k}}{d x^{k}} B_{n, \lambda}^{L}(x) & =\frac{d^{k}}{d x^{k}} n!\sum_{k=0}^{n} \frac{(x)_{k, \lambda}}{k!}\binom{n-1}{n-k} \\
& =n!\sum_{k=0}^{n} \frac{1}{k!}\binom{n-1}{n-k} \frac{d^{k}}{d x^{k}}(x)_{k, \lambda} \\
& =n!\sum_{k=0}^{n} \frac{1}{k!}\binom{n-1}{n-k} \frac{d^{k}}{d x^{k}} \sum_{l=0}^{k} S_{2, \lambda}(k, l)(x)_{l}  \tag{2.15}\\
& =n!\sum_{k=0}^{n} \frac{1}{k!}\binom{n-1}{n-k} \frac{d^{k}}{d x^{k}} \sum_{l=0}^{k} S_{2, \lambda}(k, l) \sum_{m=0}^{l} S_{1}(l, m) x^{m} \\
& =n!\sum_{k=0}^{n} \frac{1}{k!}\binom{n-1}{n-k} \sum_{l=0}^{k} \sum_{m=0}^{l} S_{2, \lambda}(k, l) S_{1}(l, m)(m)_{k} x^{m-k} .
\end{align*}
$$

This is the desired result of the theorem.

## 3. Distribution of roots of the polynomials

Woon [26] has studied the distribution and structure of the zeros of Bernoulli polynomials. Hence, we will investigate the numerical patten of the zeros of the polynomials $B_{n, \lambda}^{L}(x)$. Using the mathematica tool, the polynomial $B_{n, \lambda}^{L}(x)$ can be determined explicitly. For example,

$$
\begin{aligned}
B_{1, \lambda}^{L}(x) & =x \\
B_{2, \lambda}^{L}(x) & =x^{2}+(2-\lambda) x \\
B_{3, \lambda}^{L}(x) & =x^{3}+(6-3 \lambda) x^{2}+\left(6-6 \lambda+2 \lambda^{2}\right) x, \\
B_{4, \lambda}^{L}(x) & =x^{4}+(12-6 \lambda) x^{3}+\left(36-36 \lambda+11 \lambda^{2}\right) x^{2} \\
& +\left(24-36 \lambda+24 \lambda^{2}-6 \lambda^{3}\right) x .
\end{aligned}
$$

From the definition of the Lah-Bell polynomials $B_{n, \lambda}^{L}(x)$, we can obtain the following properties of the roots:

- For any real number $\lambda$, the polynomials $B_{n, \lambda}^{L}(x)$ with $n=1,2$ have only real roots.
- For any real number $\lambda$ and any positive integer $n$, all polynomials $B_{n, \lambda}^{L}(x)$ have a common root which is zero.


Fig. 1. The computed roots of $B_{40, \lambda}^{L}(x)$ with variable $\lambda$

Firstly, we observe the impact of $\lambda$ on the distribution of the roots of the polynomials. For the propose, we fix the degree of polynomials as $n=40$. Since the explicit form of the roots of $B_{n, \lambda}^{L}(x)$ is unknown, we calculate the roots by using the Mathematica tool with 100 working precision. The absolute numerical error is bounded as follows:

$$
\sum_{i=1}^{40}\left|B_{40, \lambda}\left(x_{i}\right)\right|<10^{-62}
$$

where $x_{i}$ denotes the root of polynomial. Hence, the results obtained from numerical computations are reliable. We compute the numerical roots of $B_{40, \lambda}^{L}(x)$ with four different parameters $\lambda=\frac{5}{10}, \frac{15}{10}, \frac{20}{10}$ and $\frac{25}{10}$ and the results are plotted
in Fig. 1. As observed in Fig. 1, the roots of the Lah-Bell polynomials have four patterns.


Fig. 2. The root distribution of $B_{n, \lambda}^{L}(x)$ with variable $\lambda$ and different integer $n=1,2, \cdots, 40$.

Secondly, we investigate the impact of the degree of polynomials on the distribution of roots of the polynomials. We compute the numerical roots of the polynomials increasing the degree of polynomials from 1 to 40 and present in Fig. 2.


Fig. 3. Real zeros of $B_{n, \lambda}^{L}(x)$ for $\lambda=\frac{5}{10}, \frac{15}{10}, \frac{20}{10}, \frac{25}{10}$ and $1 \leq n \leq 40$.
Thirdly, to investigate the real roots distribution structure of $B_{n, \lambda}^{L}(x)$, we compute the real roots and display in Fig.3.


Fig. 4. Roots distribution structures vs $\lambda \in\left[0, \frac{25}{10}\right]$.

From the results of Fig.3, we can find a remarkably regular structure of the roots of the polynomials $B_{n, \lambda}(x)$. In order to find the roots structure, we count the number of real roots for $\lambda=\frac{5}{10}, \frac{15}{10}, \frac{20}{10}$ and $\frac{25}{20}$ and $n \in[1,99]$ within $x \in[-1000,1000]$ and summarize as follows:

- $\lambda=\frac{5}{10}$ : the number of real roots $=n$.
- $\lambda=\frac{20}{10}$ : the number of real roots $= \begin{cases}1, & n=\text { odd }, \\ 2, & n=\text { even } .\end{cases}$
- $\lambda=\frac{15}{10}$ : the number of real roots $= \begin{cases}1, & n=1,3, \cdots, 13, \\ 2, & n=2,4, \cdots, 26, \\ 3, & n=15,17, \cdots, 37, \\ 4, & n=28,30, \cdots, 50, \\ 5, & n=39,41, \cdots, 63, \\ 6, & n=52,54, \cdots, 74, \\ 7, & n=65,67, \cdots, 87, \\ 8, & n=76,78, \cdots, 98, \\ 9, & n=89,91, \cdots, 99 .\end{cases}$
- $\lambda=\frac{25}{10}$ : the number of real roots $= \begin{cases}1, & n=1,3, \cdots, 27, \\ 2, & n=2,4, \cdots, 50, \\ 3, & n=29,31, \cdots, 75, \\ 4, & n=52,54, \cdots, 100, \\ 5, & n=77,79, \cdots, 99 .\end{cases}$

Finally, we compute the roots of the polynomials with fixed $n=40$ and varying parameter $\lambda=\frac{k}{10}, k=0,1, \cdots, 25$. The numerical results are plotted in Fig. 4.

Summering the above discussion, we can obtain the properties of the roots of $B_{n, \lambda}^{L}(x)$.

- When $\lambda<2$, the real parts of the roots of the polynomials $B_{n, \lambda}^{L}(x)$ are non-positive.
- When $\lambda=2$, the polynomials $B_{n, \lambda}^{L}(x)$ have pure imaginary roots except for zero roots.
- When $\lambda>2$, the real parts of the roots of the polynomials $B_{n, \lambda}^{L}(x)$ are non-negative.


## 4. Conclusion

In this paper, we review the Lah-Bell polynomials and numbers introduced by Kim-Kim and give an explicit formula for partial derivatives. In order to more accurate understanding the Lah-Bell polynomials, the distribution of roots was numerically investigated. Further, we count the number of real roots of $B_{n, \lambda}^{L}(x)$ with four different parameters $\lambda=\frac{5}{10}, \frac{15}{10}, \frac{20}{10}$ and $\frac{25}{10}$. Finally, we obtain the relation between the sign of real part of the root of $B_{n, \lambda}^{L}(x)$ and the value $\lambda$. In the next study, we will show theoretically the above facts.

Acknowledgments: The authors would like to thank the anonymous referees for their careful reading, valuable comments, and suggestions, which helped to improve the manuscript.

## References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, (1964), xiv+1046.
[2] E.Y. Bell, Exponetial polynomials, Ann. of Math., 35 (1934), 258-277.
[3] L. Carlitz, Arithemtic properties of the Bell polynomials, J. Math. Anal. Appl., 15 (1966), 33-52.
[4] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979). 51-88.
[5] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, Reidel, Dordrecht, Revised and enlarged edn., (1974) xi+343, ISBN: 90-277-04414 05-02
[6] Dmitry V. Dolgy, D.S. Kim, T. Kim and J. Kwon, On fully degenerate Bell numbers and polynomials, Filomat, 34(2) (2020), 507-514.
[7] L.-C. Jang, D.S. Kim, T. Kim and H. Lee, Some identities involving derangement polynomials and numbers and moments of gamma random variables, J. Funct. Spaces, 160 (2020), Article ID 6624006, 9 pages.
[8] D.S. Kim and T. Kim, Some identities of Bernoulli and Euler polynomials arising from umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang), 23(1) (2013), 159-171.
[9] D.S. Kim and T. Kim, Some identities of Bell polynomials, Sci. China Math., 58 (10) (2015), 2095-2104.
[10] D.S. Kim and T. Kim, Some identities of degenerate Daehee numbers arising from certain differential equations. J. Nonlinear Sci. Appl., 10 (2017), 744-751.
[11] D.S. Kim and T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys., 26(1) (2019), 40-49.
[12] D.S. Kim and T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27(2) (2020), 227-235.
[13] D.S. Kim and T. Kim, Lah-Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 23(4) (2020), 577-586.
[14] D.S. Kim and T. Kim, Degenerate Sheffer sequences and $\lambda$-Sheffer sequences, J. Math. Anal. Appl., 493(1) (2021), 124521, 21 pp.
[15] D.S. Kim and T. Kim, r-extended Lah-Bell numbers and polynomials associated with r-Lah numbers, arXiv (2020), 2008.06155 https://arxiv.org/abs/2008.06155
[16] H, Kim, Degenerate Lah-Bell polynomials arising from degenerate Sheffer sequences, Advances in Difference Equations, 687 (2020), 16pages.
[17] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20(3) (2017), 319-331.
[18] D.S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys., 23(1) (2016), 88-92
[19] T. Kim and D.S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24(2) (2017), 241-248.
[20] T. Kim and D.S. Kim, Some identities on $\lambda$-analogue of r-Stirling numbers of the first kind, Filomat, 34(2) (2020), 451-460.
[21] T. Kim and D.S. Kim, Note on degenerate gamma function, Russ. J. Math. Phys., 27(3) (2020), 352-358.
[22] T. Kim, D.S. Kim, H. Kim and J. Kwon, Some identities of degenerate Bell polynomials, Mathematics, 8(40) (2020), 8pages.
[23] T. Kim, D.S. Kim, H. Lee and L. Jang, Degenerate Bell polynomials associated with umbral calculus, J. Inequal. Appl., 226 (2020), 15pages.
[24] Y. Ma, D.S. Kim, T. Kim, H. Kim and H. Lee, Some identities of Lah-Bell polynomials, Adv. Differ. Equ., 510 (2020), 10pages.
[25] S. Tauber, Lah numbers for Fibonacci and Lucas polynomials, Fibonacci Quart., 6(5) (1968), 93-99.
[26] S.C. Woon, Analytic continuation of Bernoulli numbers, a New formula for the Riemann Zeta function, and the phenomenon of scattering of zeros, Physics, arXiv (1997), 9705021v2


[^0]:    ${ }^{0}$ Received January 28, 2021. Revised April 2, 2021. Accepted August 6, 2021.
    ${ }^{0} 2010$ Mathematics Subject Classification: 05A19, 05A40, 11B73, 11B83.
    ${ }^{0}$ Keywords: Lah number, Lah-Bell polynomials, Stirling numbers of first(second) kinds, roots distributions.
    ${ }^{0}$ Corresponding author: Jongkyum Kwon(mathkjk26@gnu.ac.kr).

