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Abstract In this paper, we prove a fixed point theorem for G-contractive type non-self

mapping in cone metric space endowed with a graph. Our result generalizes many results in

the literature and provide a new pavement for solving nonlinear functional equations.

1. Introduction and preliminaries

Continuity and convergence of functions have been dealt in many branches
of Mathematics. The study of metric space and its generalizations showed
a new way for many mathematicians to put this concept of continuity and
convergence in a more elaborative setting. Recently, Huang and Zhang [13]
defined the concept of cone metric space by replacing the set of real numbers by
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an ordered Banach space and established some fixed point theorems for map-
pings satisfying variety of contraction conditions along with much celebrated
Banach contraction mapping in the setting of cone metric space in which the
normality of cone is an essential ingredient. Several authors [5, 7, 8, 11] ana-
lyzed Kannan type non-self contraction mappings and Chatterjea type non-self
contractive mappings in Banach space endowed with graph. Also, Imdad and
Kumar [14] proved Rhoades-type Fixed point theorems for a pair of non-self
mappings for Banach space.

The aim of this paper is to prove a fixed point theorem for G-contractive
type non-self mapping in cone metric space endowed with a graph. Our result
generalizes many results in the literature.

Definition 1.1. ([13]) Let E be a real Banach space. A subset P of E is
called a cone if the following conditions are hold:

(a) P is closed, nonempty and P 6= {0};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;
(c) x ∈ P and −x ∈ P implies x = 0.

Definition 1.2. ([13]) Let P be a cone in Banach space E, define partial
ordering ‘≤’ with respect to P by x ≤ y if and only if y − x ∈ P . We
shall write x < y to indicate x ≤ y but x 6= y, while x � y will stand for
y − x ∈ Int P , where Int P denotes the interior of P . The cone P is called
normal if there is a number k > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y implies
‖x‖ ≤ k‖y‖. The least positive number satisfying this inequality is called the
normal constant of P .

In the following, suppose E is a Banach space, P is a cone in E with
Int P 6= ∅ and ≤ is a partial ordering with respect to P .

Definition 1.3. ([13]) Let X be a nonempty set and E be a real Banach
space. Suppose that the mapping d : X ×X → E satisfy:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
It is clear that the concept of a cone metric space is more general than that

of a metric space.

Example 1.4. ([13]) Let E = R2, P = {(x, y) ∈ E such that : x, y ≥ 0} ⊂ R2,
X = R and d : X×X → E defined by d(x, y) = (|x−y|, α|x−y|) where α ≥ 0
is a constant. Then (X, d) is a cone metric space.
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Definition 1.5. ([13]) Let (X, d) be a cone metric space. We say that the
sequence {xn} is

(1) a Cauchy sequence if, for every c in E with 0� c, there is an N such
that for all n,m > N , d(xn, xm)� c;

(2) a convergent sequence, if for every c in E with 0 � c, there is an N
such that for all n > N, d(xn, x)� c for some fixed x in X.

Remark 1.6. ([13]) If c ∈ IntP , 0 ≤ an and an → 0, then there exists an n0
such that for all n > n0, we have an � c.

Remark 1.7. ([13]) If 0 ≤ d(xn, x) ≤ bn and bn → 0, then d(xn, x)� c where
{xn} is a sequence and x is a given point in the cone metric space X.

Remark 1.8. ([13]) If 0 ≤ u� c for each c ∈ int P , then u = 0.

Definition 1.9. ([15]) Let ∆ denote the diagonal of the Cartesian product
X ×X. Let G = (V (G), E(G)) be simple directed graph, where V (G) is the
set of vertices coincides with X and E(G) is the set of its edges containing all
loops, that is, ∆ ⊂ E(G). G−1 is called the converse graph of G, defined as

E(G−1) = {(y, x) ∈ X ×X : (x, y) ∈ E(G)}.
If x and y are vertices in the graph G, then a path from x to y of length N

is a sequence {xi}Ni=0 of N + 1 vertices of G such that
x0 = x, xN = y and {xi−1, xi} ∈ E(G), i = 1, 2, ..., N .
A Graph is called connected if there is at least a path between any two

vertices.

Definition 1.10. ([15]) If G = {V (G), E(G)} is a graph and H ⊂ V (G). Then
the graph {H,E(H)} with E(H) = E(G)∩ (H×H) is known as the subgraph

of G determined by H. It is mentioned as GH . G̃ is called a symmetric graph
by uniting G and G−1, that is, E(G̃) = E(G) ∪ E(G−1).

Definition 1.11. ([15]) A mapping T : X → X is said to be well defined on
a metric space endowed with a graph G if it has the following property:

(x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G). (1.1)

Definition 1.12. ([15]) A well defined non-self mapping T : K → X on a
metric space endowed with a graph G is said to be

(i) a G-contraction if there is a constant α ∈ (0, 1) such that d(Tx, Ty) ≤
αd(x, y) for all x, y ∈ E(GK),
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(ii) a G-contractive type (or generalized G-contractive) mapping, if the
following inequality holds:

d(Tx, Ty) ≤αmax

{
1

2
d(x, y), d(Tx, x), d(Ty, y),

1

q
[d(Tx, y) + d(Ty, x)]

}
(1.2)

for all x, y ∈ E(GK), and 0 < α < 1, q ≥ 1 + 2α.

The following important concept used in [9] is needed in the sequel:

Definition 1.13. ([9]) Let X be a Banach space, K be a nonempty closed
subset of X and T : K → X be a non-self mapping. Let x ∈ K and Tx /∈ K.
Let y ∈ ∂K be the corresponding element such that y = (1− λ)x+ λTx (0 <
λ < 1) which in turn express the fact that d(x, Tx) = d(x, y) + d(y, Tx),
y ∈ ∂K. If for any such element x, we have

d(y, Ty) ≤ d(x, Tx) (1.3)

for all corresponding y ∈ Y, then we say that T has property (M).

Definition 1.14. ([5]) Let (X, d,G) be a Banach space endowed with a simple,
directed and weakly connected graph G is said to hold the property (L), if for
any sequence {xn}∞n=1 ⊂ X with xn → x as n → ∞ and (xn, xn+1) ∈ E(G)
for all n ∈ N, there exists a subsequence {xkn}∞n=1 satisfying

(xkn , x) ∈ E(G), ∀n ∈ N. (1.4)

2. Main result

Theorem 2.1. Let (X, d,G) be a cone metric space endowed with a simple,
directed and weakly connected graph G with property (L). Also, let K be a
nonempty closed subset of X such that (x, y) ∈ E(GK) where GK is the sub
graph of G confined by the nonempty subset K. Suppose that T : K → X
is a G-contractive type mapping having property (M). If KT := {x ∈ ∂K :
(x, Tx) ∈ E(G)} 6= ∅ and T satisfies Rothe’s boundary condition

T (∂K) ⊂ K, (2.1)

then

(a) Fix(T ) 6= ∅, and
(b) Picard iteration {xn = Tnx0}∞n=1 converges to w ∈ Fix(T ), for all

x0 ∈ KT .
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Proof. If T (K) ⊂ K, then T is actually a self mapping of the closed set K
and the conclusion follows by Rhoades fixed point theorem [22] with X = K.
Therefore, in the following, we consider only the case T (K) is not a subset of
K. Choose x0 ∈ KT , which in turn imply that (x0, Tx0) ∈ E(GK) and by
repeated performance of (1.1),

(Tnx0, T
n+1x0) ∈ E(G), ∀n ∈ N. (2.2)

Denote yn := Tnx0 for all n ∈ N. By (2.2), it follows that Tx0 ∈ K. Denote
x1 := y1 = Tx0. Now, if Tx1 ∈ K, set x2 := y2 = Tx1. If Tx1 is not in K, we
can choose an element x2 on the segment [x1, Tx1] which also belong to ∂K,
that is

x2 = (1− λ)x1 + λTx1 (0 < λ < 1). (2.3)

Continuing in this way, we form two sequences {xn} and {yn}.
(i) {xn} = {yn} = Txn−1, if Txn−1 is in K,

(ii) xn = (1− λ)xn−1 + λTxn−1 ∈ ∂K(0 < λ < 1), if Txn−1 is not in K.

Next, denote

P = {xk ∈ {xn} : xk = yk = Txk−1}, (2.4)

Q = {xk ∈ {xn} : xk 6= Txk−1}. (2.5)

Note that {xn} ⊂ K for all n ∈ N and that if xk ∈ Q, then both xk−1 and
xk+1 belong to the set P . By (2.2), we cannot have two consecutive terms of
{xn} in the set P .

Continuing this, we get three cases, to prove {xn} is Cauchy.

Case (1): Let xn, xn+1 ∈ P . In this case, xn = yn = Txn−1 ∈ K and
xn+1 = yn+1 = Txn ∈ K. But xn−1 need not be equal to yn−1.

Since {xn} ⊂ K for all n ∈ N, by (2.3), (xn, xn+1) ∈ E(GK) and so by
contraction condition (2.1),

d(xn, xn+1) = d(yn, yn+1) = d(Txn−1, Txn)

≤ αmax
{d(xn−1, xn)

2
, d(Txn−1, xn−1), d(Txn, xn),

d(Txn−1, xn) + d(Txn, xn−1)

q

}
= αmax

{
d(xn−1, xn)

2
, d(yn, xn−1), d(yn+1, xn),

d(yn, xn) + d(yn+1, xn−1)

q

}
.

(2.6)
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Since there are infinitely many n values, we obtain

d(xn, xn+1) ≤ α
d(xn−1, xn+1)

q

≤ α1

q
[d((xn−1, xn) + d(xn, xn+1)],

that is, (
1− α

q

)
d(xn, xn+1) ≤

α

q
d(xn−1, xn).

Hence, we have

d(xn, xn+1) ≤
α

q − α
d(xn−1, xn).

Case (2): Let xn ∈ P , xn+1 ∈ Q. Then, xn = yn = Txn−1 ∈ K and
xn+1 6= yn+1 = Txn ∈ K. Then xn ∈ ∂K and

d(xn, xn+1) + d(xn+1, Txn) = d(xn, Txn).

Since d(xn+1, Txn) 6= 0,

d(xn, xn+1) = d(xn, Txn)− d(xn+1, Txn) < d(xn, Txn). (2.7)

Now by a similar argument as in Case 1, (xn, xn − 1) ∈ E(GK) and hence
by contraction condition (2.1),

d(yn, yn+1) = d(xn, Txn) = d(Txn−1, Txn)

≤ αmax
{d(xn−1, xn)

2
, d(Txn−1, xn−1), d(Txn, xn),

d(Txn−1, xn) + d(Txn, xn−1)

q

}
= αmax

{d(xn−1, xn)

2
, d(xn, xn−1), d(yn, yn+1),

d(yn+1, xn−1)

q

}
. (2.8)

From the above, we conclude that

d(xn, Txn) ≤ δd(xn−1, xn), where δ = max

{
α

2
, α,

α

q − α

}
= α

and hence by (2.8), we have

d(xn+1, Txn) < d(xn, Txn) ≤ αd(xn−1, xn).

Case (3): Let xn ∈ Q, xn+1 ∈ P . Then xn 6= yn = Txn−1, xn+1 = yn+1 =
Txn and

d(xn−1, xn) + d(xn, Txn−1) = d(xn−1, Txn−1). (2.9)
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By property (M),

d(xn, xn+1) = d(xn, Txn) ≤ d(xn−1, Txn−1) ≤ d(Txn−2, Txn−1). (2.10)

By (2.3) (yn−1, yn) ∈ E(G) and by using contraction condition (2.1), we get

d(Txn−2, Txn−1)

≤ αmax
{d(xn−2, xn−1)

2
, d(Txn−2, xn−2), d(Txn−1, xn−1),

d(Txn−2, xn−1) + d(Txn−1, xn−2)

q

}
= αmax

{
d(xn−1, xn−2), d(xn, xn−1),

d(Txn−1, xn−2)

q

}
. (2.11)

Hence we have

d(Txn−1, xn−2)

q
≤ d(Txn−1, xn−1) + d(xn−1, xn−2)

q

≤ d(Txn−2, Txn−1) + d(xn−1, xn−2)

q
.

Therefore, we have

d(Txn−2, Txn−1)

≤ αmax

{
d(xn−1, xn−2), d(xn, xn−1),

d(Txn−2, Txn−1) + d(xn−1, xn−2)

q

}
.

(2.12)

Here also we have three cases,

(iii) d(Txn−2, Txn−1) ≤ αd(xn−1, xn−2),
(iv) d(Txn−2, Txn−1) ≤ αd(xn, xn−1),

(v) d(Txn−2, Txn−1) ≤ αd(Txn−2,Txn−1)+d(xn−1,xn−2)
q and so,

d(Txn−2, Txn−1) ≤ α
q−αd(xn−1, xn−2).

Using (2.11), the above cases imply

d(xn, xn+1) ≤ λβn,

where βn ∈ {d(xn−2, xn−1), d(xn−1, xn)} and λ := α
q−α .
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For n > 1, d(xn, xn+1) ≤ λ
n−1
2 β2, β2 ∈ {d(x0, x1), d(x1, x2)}.

Using triangle inequality, for n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤
(
λ

n−1
2 + λ

n−2
2 + · · ·+ λ

m−1
2

)
β2

≤
√
λ
m−1

1−
√
λ
β2 → 0 as m→∞.

By Remarks 1.6 and 1.7, we have d(xn, xm)� k. Therefore {xn} is a Cauchy
sequence in K. Since K is complete, there is some point w ∈ K such that
xn → w. There exists a subsequence {xnm} such that xnm = ynm = Txnm−1

and so Txnm−1 → w.

Next we prove that Tw = w.

d(Tw,w)

≤ d(Tw, Txnm−1) + d(Txnm−1 , w)

≤ αmax
{d(xnm−1 , w)

2
, d(Txnm−1 , xnm−1), d(Tw,w),

d(Txnm−1 , w) + d(Tw, xnm−1)

q

}
+ d(Txnm−1 , w).

Using xnm = ynm = Txnm−1 → w, as m→∞, we get, the following cases,

(1) d(Tw,w) ≤ αd(xnm−1 ,w)

2 + d(Txnm−1 , w)� α k
2α + k

2 = k,
(2) d(Tw,w) ≤ αd(Txnm−1 , xnm−1) + d(Txnm−1 , w)

≤ α(d(Txnm−1 , w) + d(w, xnm−1) + d(Txnm−1 , w)

= α k
2α + k

2(α+1)(α+ 1) = k,

(3) d(Tw,w) ≤ αd(Tw, x) + d(Txnm−1 , w) implies

d(Tw,w) ≤ 1
1−αd(Txnm−1 , w)� 1

1−α(1− α)k = k,

(4)

d(Tw,w) ≤ α
d(Txnm−1 , w) + d(Tw, xnm−1)

q
+ d(Txnm−1 , w)

≤ α
d(Txnm−1 , w) + d(Tw,w) + d(w, xnm−1)

q
+ d(Txnm−1 , w)

≤ α

q − α
d(Txnm−1 , w) +

α

q − α
d(w, xnm−1)

� α

q − α
.
k

2 α
q−α

+
α

q − α
.
k

2 α
q−α

= k.
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Thus in all the above cases, d(Tw,w)� k for each k ∈ int P . Using Remark
1.8, we get d(Tw,w) = 0 implies Tw = w. Hence, w is the fixed point of T .
This completes the proof. �

Acknowledgments: The authors would like to thank the reviewers for giving
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[11] C. Chifu and G. Petruşsel, Generalized contractions in metric spaces endowed with a
graph, Fixed Point Theory Appl., 2012, 161, (2012), 9 pages.

[12] M. Gabeleh, Global optimal solutions of non-self mappings, U.P.B. Sci. Bull. Ser. A.,
75 (2013), 67–74.

[13] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl., 332(2) (2007), 1468–1476.

[14] M. Imdad and S. Kumar, Rhoades-type fixed point theorems for a pair of nonself map-
pings, Comput. Math. Appl., 46 (2003), 919–927.

[15] J. Jachymski, The contraction principle for mappings on a metric space with a graph,
Proc. Amer. Math. Soc., 136(4) (2008), 1359–1373.

[16] G. Jungck, Common fixed points for non-continuous nonself maps on nonmetric spaces,
Far East J. Math. Sci., 4(2) (1996), 199–215.

[17] M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings,
Fixed Point Theory Appl., (2008), Art. ID 649749, 8 pp.

[18] D. IIic and V. Rakocevic, Common fixed points for maps on cone metric spaces, J.
Math. Anal. Appl., 341 (2008), 876–882.

[19] J. Meszaros, A comparison of various definitions of contractive type mappings, Bull.
Calcutta Math. Soc., 84(2) (1992), 167–194.



1114 R. Sumitra, R. Aruna and R. Hemavathy

[20] S. Radenovic and B.E. Rhoades, Fixed point theorem for two nonself mappings in cone
metric spaces, Comput. Math. Appl., 57 (2009), 1701–1707.

[21] Sh. Rezapour, A review on topological properties of cone metric spaces, Analysis, Topol-
ogy and Applications 2008(ATA 2008), Vrnjacka Banja, Serbia, May 30 to June 4,
(2008).

[22] B.E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japonica, 23(4)
(1978), 457–459.

[23] M. Samreen, T. Kamran and N. Shahzad, Some fixed point theorems in b-metric space
endowed with graph, Abstract Appl. Anal., 2013, Article ID 967132, (2013), 9 pp.

[24] V. Sankar Raj, A best proximity point theorem for weakly contractive non-self mappings,
Nonlinear Anal., 74 (2011), 4804–4808.

[25] J. Zhang, Y. Su and Q. Cheng, A note on ‘A best proximity point theorem for Geraghty-
contractions’, Fixed Point Theory Appl., 2013 (2013), Article ID 99.


