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Abstract. The purpose of this paper is to introduce and study a class of coupled systems

of fuzzy delay differential equations involving fuzzy initial values and fuzzy source functions

of triangular type. We assume that these initial values and source functions are triangular

fuzzy functions and define solutions of the coupled systems as a triangular fuzzy function

matrix consisting of real functional matrices. The method of triangular fuzzy function,

fractional steps and fuzzy terms separation are used to solve the problems. Furthermore, we

prove existence and uniqueness of solution for the considered systems, and then a solution

algorithm is proposed. Finally, we present an example to illustrate our main results and give

some work that can be done later.
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1. Introduction

In an ecosystem, it is out of the question for only one object to exist, so we
need to consider that many species exist and interact with each other (that
is, coupled systems). Moreover, owing to a lot of objective reasons in real life,
such as the aging of production facilities, time delay and ambiguity should be
taken into account. Thus, in this paper, motivated by the work of Fatullayev
et al. [7] and Gasilov and Amrahov [9], we come up with the following coupled
system of fuzzy delay differential equations (FDDCS):

x
′
(t) = −m1(t)x(t) + n1(t)y(t− τ) + F̃1(t), t > 0,

y
′
(t) = −m2(t)y(t) + n2(t)x(t− τ) + F̃2(t), t > 0,

x(t) = Φ̃1(t), −τ ≤ t ≤ 0,

y(t) = Φ̃2(t), −τ ≤ t ≤ 0,

(1.1)

and explore existence and uniqueness result of solution for the FDDCS (1.1),

where τ is the value of time delay, and Φ̃i(t) is triangular fuzzy function

(TFF) defined on [−τ, 0], F̃i(t) is also TFF on (0,∞) and, mi(t) and ni(t) are
continuous crisp functions for i = 1, 2.

If τ = 0, the FDDCS (1.1) can be rewritten as the fuzzy delay differential
coupled system as follows:

x
′
(t) = −m1(t)x(t) + n1(t)y(t) + F̃1(t), t > 0,

y
′
(t) = −m2(t)y(t) + n2(t)x(t) + F̃2(t), t > 0,

x(0) = Φ̃1(0), y(0) = Φ̃2(0).

(1.2)

We note that (1.2) is new and not reported in the literature, and the sys-
tem (1.1) is an extension of the linear inhomogeneous fuzzy delay differential
equations (FDDEs) studied by Fatullayev et al. [7]:

{
x′(t) = n(t)x(t) +m(t)x(t− τ) + F̃ (t), t > 0,

x(t) = Φ̃(t), −τ ≤ t ≤ 0,

which solution was shown as a fuzzy set of real functions via presenting a
method, and Fatullayev et al. [7] also proved existence and uniqueness of
solution for FDDE involving TFFs. Furthermore, Fatullayev et al. [7] put
forward that the proposed method can be extended to the system of FDDEs
by using the research results of Gasilov and Amrahov [9].

In this paper, we shall generalize the method proposed in [7] to discuss
existence and uniqueness of solution for the FDDCS (1.1).

As we all know, there are not only a single species in biological ecosystems.
That is to say, multiple species exist and there must be competition among
them. Thus, it is indispensable to take coupling into account (see [6, 30]).
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Coupling relationship refers to the interaction and mutual influence between
two or more objects. The coupled systems of differential equations in broader
domains, such as ordinary differential equations and functional differential-
difference equations, have been studied by multitudinous researchers.

Recently, Wang et al. [25] considered existence of extreme solutions to a
class of coupled causal differential equations as follows: x

′
(t) = Q1(x, y)(t), t ∈ I,

y
′
(t) = Q2(y, x)(t), t ∈ I,

gi(x(0), x(Υ), y(0), y(Υ)) = 0, for i = 1, 2,

and sufficient conditions under which the equations have extreme solutions
were obtained. Gasilov and Amrahov [9] investigated the following system of
linear differential equation: x

′
(t) = a11 x(t) + a12 y(t) + F1, t > 0,

y
′
(t) = a21 y(t) + a22 x(t) + F2, t > 0,

x(0) = A, y(0) = B,

where aij is a given real number for i, j = 1, 2, A = [a1, a2] and B = [b1, b2] are
given intervals, Fi = 〈fia, fib〉 is given convex bunche of function for i = 1, 2,
and also expressed the fuzzy terms in the problem as interval values. Assuming
these real functions to be linearly distributed between two given real functions
as for each forcing term, Gasilov and Amrahov [9] presented a new approach
to nonhomogeneous systems of interval differential equations and established
an existence and uniqueness theorem. For more detail work, one can refer to
[3, 4, 17, 21] and the references cited therein.

On the other hand, in the actual production process, time delay usually
occurs on account of a variety of reasons in science and engineering. Thereby,
in recent years, the scholars have been devoted themselves to solve the dif-
ferential equations with time delay (DDEs). Weng [26] present an efficient
algorithm based on Schauder’s fixed point theorem and researched existence
of positive T -periodic solutions for the following problem:

y
′
(t) = p(t)y(t) + q(t)yk(t− τ(t)), t ≥ 0.

Of course, DDEs may be linear [5] or non-linear [28]. By using an appropriate
fixed point theorem, Miraoui and Repovs [20] obtained several new sufficient
conditions which ensure existence, exponential stability, and uniqueness of
(µ, ν)-pap solutions for a class of DDEs. Furthermore, time delay can also be
combined with coupling, which is of great significance for studying biological
problems in particular.
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In [24], the following biological mathematical model of mRNA was men-
tioned, which is a kind of coupled delay differential equations (CDDEs):

dm

dt
= −µmm(t) +H(p(t− T )),

dp

dt
= m(t)− µpp(t).

More papers on CDDEs are available to readers. See, for instance, [2, 13, 22,
29] and the references therein.

Besides coupling and time delay, ambiguity is also the one we need to think
about. As Rouvray [23] pointed out, “all scientific pronouncements have some
inherent uncertainty about them and cannot be assumed to be strictly valid”.
In fact, many practical problems arising in physics, biology, engineering, signal
processing, finance and other fields are often uncertainty. As one of the more
restrictive uncertainty models, the fuzzy set theory has been further developed
and a wide number of applications to dynamical conducts arising in many
mathematical or computer models of some deterministic real-world phenomena
affected by uncertainty and has attracted the attention of several researchers.
That is to say, it is interesting and very important to explore fuzzy differential
equations (FDEs).

In recent years, research on FDEs has been continuously investigated. For
instance, Gomes et al. [11] focused on FDEs and explained the basics of
various approaches of FDEs. Liu [15] provided a numerical method to solve
a FDE via differential inclusions and showed that the solution of a FDE via
differential inclusions is proved to be equal to that of the master equation of
fuzzy dynamics. Other recent related work of considering (implicit) FDEs,
see, for example, [12, 16, 27] and references cited therein.

The remainder of this paper is organized as follows. The necessary prelimi-
naries about the fuzzy theory that we are going to use are listed in Section 2.
In Section 3, we introduce concept of solution of the FDDCS (1.1) and describe
how to get it. Ultimately, a solution algorithm is proposed. In Section 4, we
present an example to illustrate the correctness of the solution algorithm. Fi-
nally, in Section 5, we summarize the research results of this paper, and put
forward the content that one can study in the future.

2. Preliminaries

We define a fuzzy set Ã as a pair of the universal set U and the membership

function (MF) µ : U → [0, 1]. The MF of a fuzzy set Ã can be denoted as µ
Ã

.
For each x ∈ U , the numerical value µ

Ã
(x) is called the membership degree
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(MD) of x in Ã. The crisp set supp(Ã) = {x ∈ U | µ
Ã

(x) > 0} is called the

support of Ã.

Afterwards, let U be the set of real numbers R, and a, c and b be real
numbers which meet a ≤ c ≤ b. Then the set ũ with MF

µ(x) =


x−a
c−a , a < x < c,

1, x = c,
b−x
b−c , c < x < b,

0, otherwise

is called a triangular fuzzy number (TFN) and we denote it as ũ = (a, c, b). On
the grounds of the geometric interpretation, the number c is called the vertex
of ũ, we denote u = a and u = b to represent the left and the right end-points
of ũ, respectively. Frequently, we express ũ = (a, c, b) as ũ = ucr + ũun. Here,
ucr = c is the crisp part and ũun = (a− c, 0, b− c) is the uncertain part of ũ.

It is also useful to represent the fuzzy sets though their α-cuts. For each

α ∈ (0, 1], the crisp set Aα = {x ∈ U | µ
Ã

(x) ≥ α} is called the α-cut of Ã.

For α = 0, the A0 = closure(supp(Ã)).

For the TFN ũ = (a, c, b), the α-cuts are intervals uα = [uα, uα], where
uα = a+ α(c− a) and uα = b+ α(c− b). These formulas can be rewritten as
uα = c + (1 − α)(a − c) and uα = c + (1 − α)(b − c). Hence, uα = [uα, uα] =
c+ (1− α)[a− c, b− c]. From here we can see that an α-cut is homothetic to
[a, b] (which is the 0-cut) with center c and with ratio (1− α).

There are different notions about the fuzzy functions. In this study, we use
the concept of the fuzzy function which was proposed by Gasilov et al. [10],

namely, fuzzy function is a bunch of fuzzy real functions. As a value F̃ (t) of

a fuzzy bunch F̃ at time t, we understand the fuzzy set, which elements are
the values of the real functions at t, with the higher MD of the corresponding
functions. Mathematically, µ

F̃ (t)
(x) = α if and only if

∃y(·) :
(
µ
F̃

(y) = α ∧ y(t) = x
)
∧ ∀z(·) :

(
µ
F̃

(z) > α→ z(t) 6= x
)
,

where “∧” and “→” are the logical conjunction and implication symbols, re-
spectively.

Definition 2.1. ([10]) Let U be a set of continuous functions defined on

an interval I, and Fa(·), Fc(·), Fb(·) ∈ U . We call the fuzzy subset F̃ of U,
determined by the MF as follows:

µ
F̃ (y(·)) =

 α, y = Fa + α(Fc − Fa) and 0 < α ≤ 1,
α, y = Fb + α(Fc − Fb) and 0 < α ≤ 1,
0, otherwise,
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as TFF and denote it as F̃ = 〈Fa, Fc, Fb〉.

According to this definition, a TFF is a fuzzy set (or, fuzzy bunch) of real
functions. Among them only two functions have the MD α: the functions
y1 = Fa + α(Fc − Fa) and y2 = Fb + α(Fc − Fb).

In order to intuitively show a group of TFFs, in the next moment we give
the following example based on the corresponding work of Gasilov et al. [10].

Example 2.2. In Figure 1, we depict a group of TFFs as{
F̃1 = 〈F1a, F1c, F1b〉,
F̃2 = 〈F2a, F2c, F2b〉,

where

(1) F1a(t) = −t2 + 6 t− 5 (MD is 0, the black curve that is at bottom on
[0, 1] and at upper on [1, 2]);

(2) F1c(t) = t2 − 3 t+ 2 (MD is 1, the black dashed line);
(3) F1b(t) = t2− 6 t+ 5 (MD is 0, the black curve that is at upper on [0, 1]

and at bottom on [1, 2]);
(4) F2a(t) = −3 t2 + 6 t− 3 (MD is 0, the blue curve that is at bottom on

[0, 2]);
(5) F2c(t) = t2 − 2 t+ 1 (MD is 1, the blue dashed line);
(6) F2b(t) = 3 t2 − 6 t + 3 (MD is 0, the blue curve that is at upper on

[0, 2]).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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1
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Figure 1. A group of TFFs

The TFF F̃1 with MDs 0.7 and 0.3 are depicted by red dotted and dashed-

dotted lines, respectively. And the TFF F̃2 with MDs 0.7 and 0.3 are described
by cyan dotted and dashed-dotted lines which are marked, respectively.
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The value of a TFF at a time t ∈ I can be expressed by the following
formula:

F̃ (t) = (min {Fa(t), Fc(t), Fb(t)} , Fc(t),max {Fa(t), Fc(t), Fb(t)}) .

We can easily find out that this value is a TFN, and a TFF F̃ = 〈Fa, Fb, Fc〉 is
not a fuzzy number-valued function. In fact, it is a fuzzy subset of the universe
of continuous functions. Each element of this fuzzy subset is a real function
with a certain MD.

If Fa(t) ≤ Fc(t) ≤ Fb(t) for all t ∈ I, then the TFF F̃ = 〈Fa, Fc, Fb〉 is

regular TFF on I, and we have F̃ (t) = (Fa(t), Fc(t), Fb(t)). Further, when

a TFF F̃ is not regular, we call it as non-regular TFF. It means that for a

non-regular TFF, in general, F̃ (t) 6= (Fa(t), Fc(t), Fb(t)). And the graphs of
functions Fa, Fc and Fb can interchanged as t goes. In Figure 1, the TFFs

F̃1 and F̃2 are non-regular and regular on [0, 2], respectively. Without loss of
generality, no matter regular TFFs or non-regular TFFs, main results and the
algorithm in this paper are all valid. In the sequel, we assume that TTFs are
regular.

3. Main results

As for the FDDCS (1.1), we can solve it by the method of steps.
At first, we deal with the FDDCS (1.1) on interval [0, τ ]. Since x(t− τ) =

Φ̃1(t− τ), y(t− τ) = Φ̃2(t− τ) for t ∈ [0, τ ], the FDDCS (1.1) is equivalent to
the fuzzy coupled initial value problem with delays (FCDIVP) as follows:

x
′
(t) = −m1(t)x(t) + G̃1(t),

y
′
(t) = −m2(t)y(t) + G̃2(t),

x(0) = Φ̃1(0),

y(0) = Φ̃2(0),

(3.1)

where

G̃1(t) = n1(t)Φ̃2(t− τ) + F̃1(t), G̃2(t) = n2(t)Φ̃1(t− τ) + F̃2(t).

Then, we transform the FCDIVP (3.1) into matrix form:{
Z

′
(t) = A(t) · Z(t) + G̃(t),

Z(0) = Φ̃(0),
(3.2)

where,

Z(t) =

(
x(t)
y(t)

)
, A(t) =

(
−m1(t) 0

0 −m2(t)

)
,

G̃(t) =

(
G̃1(t)

G̃2(t)

)
, Φ̃(0) =

(
Φ̃1(0)

Φ̃2(0)

)
.
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Definition 3.1. For the problem (3.2), the fuzzy set Z̃ with MF

µ
Z̃

(Z(·)) = min
{
µ

Φ̃
(φ(0)) , µ

G̃

(
Z

′
(t)−A(t) · Z(t)

)}
(3.3)

is called to be a solution of the problem (3.2), which is also a solution to the
FCDIVP (3.1), where φ(0) = Z(0).

However, how to comprehend the formula (3.3)?
Let Z(t) be a functional matrix. We determine φ(0) = Z(0) for t ∈ [0, τ ]

and calculate µ1 , µΦ̃
(φ(0)). After that, we compute g(t) = Z

′
(t)−A(t) ·Z(t)

on interval [0, τ ] and determine µ2 , µ
G̃

(g(t)). Finally, we calculate the MD
µ as µ = min{µ1, µ2}. We assign the number µ as the MD of Z(t) and define
the set of all functional matrices such as Z(t) with their MDs µ as the fuzzy

solution Z̃.

According to Definition 3.1, the solution Z̃ is a fuzzy bunch of real functional
matrices, which consists of functional matrices such as Z(t). If a functional
matrix Z(t) satisfies {

Z
′
(t) = A(t) · Z(t) + g(t),

Z(0) = φ(0),

for some functional matrices g ∈ supp(G̃) and φ(0) ∈ supp(Φ̃(0)), then it has
a positive MD.

Let us represent G̃1 = g1cr + g̃1(crisp part + uncertainty), where g1cr = G1c

and g̃1 = 〈g1a, 0, g1b〉 = 〈G1a − G1c, 0, G1b − G1c〉. Similarly, G̃2 = g2cr + g̃2,
where g2cr = G2c and g̃2 = 〈g2a, 0, g2b〉.

Assume that Φ̃1 and Φ̃2 are regular TFFs. Then Φ̃1(0) and Φ̃2(0) are

TFNs. Further, Φ̃1(0) = φ1cr(0) + φ̃1(0), here φ1cr(0) = Φ1c(0) and φ̃1(0) =
(φ1a(0), 0, φ1b(0)) = (Φ1a(0) − Φ1c(0), 0,Φ1b(0) − Φ1c(0)). In the same way,

Φ̃2(0) = φ2cr(0) + φ̃2(0), here φ2cr(0) = Φ2c(0) and φ̃2(0) = (φ2a(0), 0, φ2b(0)).
Thus, we can obtain

G̃(t) = gcr(t) + g̃(t), Φ̃(0) = φcr(0) + φ̃(0),

where

G̃(t) =

(
G̃1(t)

G̃2(t)

)
, gcr(t) =

(
g1cr(t)
g2cr(t)

)
, g̃(t) =

(
g̃1(t)
g̃2(t)

)
;

Φ̃(0) =

(
Φ̃1(0)

Φ̃2(0)

)
, φcr(0) =

(
φ1cr(0)
φ2cr(0)

)
, φ̃(0) =

(
φ̃1(0)

φ̃2(0)

)
.
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On account of the problem (3.2) is linear, we can solve it by using the
superposition principle. This follows that in order to get the solution of the
problem (3.2), we can consider the following subproblems, separately:

(1) The associated inhomogeneous crisp problem:{
Z

′
(t) = A(t) · Z(t) + gcr(t),

Z(0) = φcr(0).
(3.4)

(2) The homogeneous problem with initial TFFs:{
Z

′
(t) = A(t) · Z(t),

Z(0) = φ̃(0).
(3.5)

(3) The problem with fuzzy source functions and zero initial functions:{
Z

′
(t) = A(t) · Z(t) + g̃(t),

Z(0) = 0.
(3.6)

By solving the above three subproblems (3.4)-(3.6), we can obtain the so-
lution of the FDDCS (1.1) on interval [0, τ ]. Similarly, at the next step, the
solution on interval [τ, 2τ ] can be found. Therefore, we can conclude that the
solution of the FDDCS (1.1) exists for t ∈ [0,∞) using the method of steps.

In the sequel, we make clear how to solve each of these three subproblems
(3.4)-(3.6).

3.1. The associated inhomogeneous crisp problem. Consider the prob-
lem (3.4), it has a unique solution, on condition that mi(t), gicr(t) and φicr(t)
are continuous functions for i = 1, 2.

Using the integrating factor matrix U(s) = e−
∫ s
0 A(t) dt, the solution is

Zcr(t) =
1

U(t)

(
φcr(0) +

∫ t

0
U(s)gcr(s) ds

)
. (3.7)

3.2. The homogeneous problem with initial TFFs. This subsection ex-
plains how to solve the problem (3.5). Now, we give the following theorem.

Theorem 3.2. Consider the problem (3.5), where φ̃1(0) = (φ1a(0), 0, φ1b(0)),

φ̃2(0) = (φ2a(0), 0, φ2b(0)). And m1(t),m2(t) are continuous functions. If

Za(t) =

(
xa(t)
ya(t)

)
and Zb(t) =

(
xb(t)
yb(t)

)
are solutions of the problem{

Z
′
(t) = A(t) · Z(t),

Z(0) = φ(0),
(3.8)
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for

(
φ1(0)
φ2(0)

)
=

(
φ1a(0)
φ2a(0)

)
and

(
φ1(0)
φ2(0)

)
=

(
φ1b(0)
φ2b(0)

)
, respectively, then

the problem (3.5) has a unique solution Z̃φ, which is a TFF matrix given by

Z̃φ = 〈Za, 0, Zb〉. (3.9)

Proof. First and foremost, on the basis of Definition 3.1, we know that each

Z(t) with nonzero MD from the bunch Z̃φ is a solution of the problem (3.8)

for some

(
φ1(0)
φ2(0)

)
from

(
φ̃1(0)

φ̃2(0)

)
with ease.

Secondly, according to Definition 2.1, the bunch φ̃1 = 〈φ1a, 0, φ1b〉 consists
of functions kφ1a and kφ1b ([0, 1] 3 k = 1− α) owing to φ1c = 0. And the

bunch φ̃2 = 〈φ2a, 0, φ2b〉 is similar to the former.
In addition, if a matrix Z(t) is a solution of the problem (3.8), then kZ(t) is

a solution of the same equation with

(
kφ1(0)
kφ2(0)

)
taken instead of

(
φ1(0)
φ2(0)

)
.

Based on the above analysis we can get the conclusion that the bunch Z̃φ
consists of kZa and kZb. Therefore, the bunch Z̃φ is a TFF matrix determined

to be Z̃φ = 〈Za, 0, Zb〉. �

As a matter of fact, we can get the solution Za(t), and the solution Zb(t)
can be solved by the same way. It is well known that the solution Za(t) can

be expressed as Za(t) = e
∫ t
0 A(s) dsφ01(0), where φ01(0) =

(
φ1a(0)
φ2a(0)

)
.

The value of the TFF matrix Z̃φ (3.9) at a time t can be written as the

formula Z̃φ(t) = (min{Za(t), 0, Zb(t)}, 0,max{Za(t), 0, Zb(t)}). Note that this
value is a matrix of TFNs.

3.3. The problem with fuzzy source functions and zero initial func-
tions. With respect to the problem (3.6), the theorem is given to deal with
it as follows.

Theorem 3.3. For the problem (3.6), where g̃1 = 〈g1a, 0, g1b〉, g̃2 = 〈g2a, 0, g2b〉,

and m1(t),m2(t) are continuous functions. If Zu(t) =

(
xu(t)
yu(t)

)
and Zv(t) =(

xv(t)
yv(t)

)
are solutions of the problem

{
Z

′
(t) = A(t) · Z(t) + g(t),

Z(0) = 0,
(3.10)
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for

(
g1(t)
g2(t)

)
=

(
g1a(t)
g2a(t)

)
and

(
g1(t)
g2(t)

)
=

(
g1b(t)
g2b(t)

)
in several, then the

problem (3.6) has a unique solution Z̃g, which is a TFF matrix given by

Z̃g = 〈Zu, 0, Zv〉 . (3.11)

Proof. The proof can be done by the same way as in Theorem 3.2. �

Actually, we can obtain the solution Zu(t), and the solution Zv(t) can be
worked out by the same method. The solution Zu(t), as everyone knows, can
be written as

Zu(t) =
1

U(t)

(∫ t

0
U(s)g1(s) ds

)
,

where U(s) = e−
∫ s
0 A(t) dt and g1(s) =

(
g1a(s)
g2a(s)

)
. Therefore, we can also

express the value of the TFF matrix Z̃g (3.11) at a time t by

Z̃g(t) = (min{Zu(t), 0, Zv(t)}, 0,max{Zu(t), 0, Zv(t)}),
which is a matrix of TFNs.

3.4. A solution algorithm. From what has been discussed above, one can
get the following solution algorithm for solving the FDDCS (1.1).

Algorithm 3.4.

Step 1 Using the method of steps and solving the FDDCS (1.1) on interval
[0, τ ], transform the FDDCS (1.1) into the FCDIVP (3.1). Further,
change the FCDIVP (3.1) to the problem (3.2).

Step 2 Represent the source functions and initial values as

G̃1 = g1cr + 〈g1a, 0, g1b〉, G̃2 = g2cr + 〈g2a, 0, g2b〉,

Φ̃1(0) = φ1cr(0) + (φ1a(0), 0, φ1b(0)), Φ̃2(0) = φ2cr(0) + (φ2a(0), 0, φ2b(0)).

Step 3 Find the solution Zcr(t) of the problem (3.4).
Step 4 Solve the problem (3.8) and denote the solutions by Za(t) and Zb(t),

corresponding to

(
φ1(0)
φ2(0)

)
=

(
φ1a(0)
φ2a(0)

)
and

(
φ1(0)
φ2(0)

)
=

(
φ1b(0)
φ2b(0)

)
,

respectively, and let

Z̃φ(t) = (min{Za(t), 0, Zb(t)}, 0,max{Za(t), 0, Zb(t)}).
Step 5 Seek the solutions Zu(t) and Zv(t) of the problem (3.10), in regard

to

(
g1(t)
g2(t)

)
=

(
g1a(t)
g2a(t)

)
and

(
g1(t)
g2(t)

)
=

(
g1b(t)
g2b(t)

)
, respectively,

and define

Z̃g(t) = (min{Zu(t), 0, Zv(t)}, 0,max{Zu(t), 0, Zv(t)}).
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Step 6 Construct the unique solution of the FDDCS (1.1) on interval [0, τ ] as
follows:

Z̃(t) = Zcr(t) + Z̃φ(t) + Z̃g(t).

Moreover, the unique solution on interval [τ, 2τ ], · · · can be obtained sim-
ilarly. In consequence, we get a unique solution of the FDDCS (1.1) which
exists at t ≥ 0.

4. An example

In this section, to verify the correctness of the solution algorithm, we present
the following example.

Example 4.1. Let us solve the problem:
x

′
(t) = − cos t x(t) + y

(
t− π

2

)
+ F̃1(t), t > 0,

y
′
(t) = − sin t y(t) + x

(
t− π

2

)
+ F̃2(t), t > 0,

x(t) = Φ̃1(t), −π
2 ≤ t ≤ 0,

y(t) = Φ̃2(t), −π
2 ≤ t ≤ 0,

(4.1)

where

F̃1 = f1cr + 〈f1a, 0, f1b〉, F̃2 = f2cr + 〈f2a, 0, f2b〉,
Φ̃1 = φ1cr + 〈φ1a, 0, φ1b〉, Φ̃2 = φ2cr + 〈φ2a, 0, φ2b〉

with

f1cr = (sin t+ 1) cos t, f2cr = (− cos t+ 1) sin t,

f1a = −0.25 sin t cos t, f1b = 0.25 sin t cos t,

f2a = 0.25 sin t cos t, f2b = −0.25 sin t cos t,

φ1cr = − sin t cos t, φ2cr = sin t cos t,

φ1a = −0.15 cos t+ 0.25 sin t cos t, φ1b = 0.15 cos t− 0.25 sin t cos t,

φ2a = −0.15 sin t− 0.25 sin t cos t, φ2b = 0.15 sin t+ 0.25 sin t cos t.

At first, we deal with the problem (4.1) on interval
[
0,
π

2

]
. The problem

(4.1) can be transformed as the problem:
x

′
(t) = − cos t x(t) + G̃1(t),

y
′
(t) = − sin t y(t) + G̃2(t),

x(0) = Φ̃1(0), y(0) = Φ̃2(0).

(4.2)

Furthermore, we can rewrite the problem (4.2) in matrix form:{
Z

′
(t) = A(t) · Z(t) + G̃(t),

Z(0) = Φ̃(0),
(4.3)
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where

Z(t) =

(
x(t)
y(t)

)
, A(t) =

(
− cos t 0

0 − sin t

)
,

G̃(t) =

(
G̃1(t)

G̃2(t)

)
=

(
Φ̃2

(
t− π

2

)
+ F̃1(t)

Φ̃1

(
t− π

2

)
+ F̃2(t)

)
, Φ̃(0) =

(
Φ̃1(0)

Φ̃2(0)

)
.

Then, after a series of calculations,we can obtain

G̃1 = g1cr + 〈g1a, 0, g1b〉 , G̃2 = g2cr + 〈g2a, 0, g2b〉 ,
Φ̃1(0) = φ1cr(0) + φ̃1(0), Φ̃2(0) = φ2cr(0) + φ̃2(0),

where

g1cr = cos t, g2cr = sin t, g1a = 0.15 cos t, g1b = −0.15 cos t,

g2a = −0.15 sin t, g2b = 0.15 sin t, φ1cr(0) = 0, φ2cr(0) = 0,

φ̃1(0) = (−0.15, 0, 0.15) , φ̃2(0) = (0, 0, 0) .

(i) We notice the associated inhomogenous crisp problem:{
Z

′
(t) = A(t) · Z(t) + gcr(t),

Z(0) = φcr(0),
(4.4)

where

gcr(t) =

(
g1cr(t)
g2cr(t)

)
, φcr(0) =

(
φ1cr(0)
φ2cr(0)

)
and find the crisp solution Zcr(t) =

(
xcr(t)
ycr(t)

)
=

(
1− e− sin t

1− ecos t−1

)
, which is

illustrated in Figure 2.
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Figure 2. The crisp solutions.

(ii) Consider the following crisp problem:{
Z

′
(t) = A(t) · Z(t),

Z(0) = φ(0),
(4.5)
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for

(
φ1(0)
φ2(0)

)
=

(
φ1a(0)
φ2a(0)

)
and

(
φ1(0)
φ2(0)

)
=

(
φ1b(0)
φ2b(0)

)
, and find the

solutions Za(t) =

(
xa(t)
ya(t)

)
=

(
−0.15 e− sin t

0

)
and Zb(t) =

(
xb(t)
yb(t)

)
=(

0.15 e− sin t

0

)
, respectively. Then the solution to the following problem:{

Z
′
(t) = A(t) · Z(t),

Z(0) = φ̃(0),
(4.6)

is the TFF matrix Z̃φ = 〈Za, 0, Zb〉, which is graphed in Figure 3, and we know
that

Z̃φ(t) = (min{Za(t), 0, Zb(t)}, 0,max{Za(t), 0, Zb(t)}) .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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0.15

Figure 3. Uncertainty of the solutions due to initial functions.

(iii) Deal with the crisp problem as follows:{
Z

′
(t) = A(t) · Z(t) + g(t),

Z(0) = 0,
(4.7)

for

(
g1(t)
g2(t)

)
=

(
g1a(t)
g2a(t)

)
and

(
g1(t)
g2(t)

)
=

(
g1b(t)
g2b(t)

)
, and find the solu-

tions Zu(t) =

(
xu(t)
yu(t)

)
=

(
0.15 (1− e− sin t)
−0.15 (1− ecos t−1)

)
and Zv(t) =

(
xv(t)
yv(t)

)
=(

−0.15 (1− e− sin t)
0.15 (1− ecos t−1)

)
, in several. Then it follows that the solution to the

third subproblem of the problem (4.3) as hereunder mentioned:{
Z

′
(t) = A(t) · Z(t) + g̃(t),

Z(0) = 0,
(4.8)
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is the TFF matrix Z̃g = 〈Zu, 0, Zv〉, which is depicted in Figure 4, and one
knows that

Z̃g(t) = (min{Zu(t), 0, Zv(t)}, 0,max{Zu(t), 0, Zv(t)}) .
In general, by solving the problems (4.4), (4.6) and (4.8), it follows from

Algorithm 3.4 that we can get the unique solution of the problem (4.1) on

interval
[
0,
π

2

]
as

Z̃(t) = Zcr(t) + Z̃φ(t) + Z̃g(t),

which is illustrated in Figure 5.
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Figure 4. Uncertainty of the solutions owing to source functions.
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Figure 5. The fuzzy solutions obtained by the proposed method.

Furthermore, the unique solution of the problem (4.1) on interval
[π

2
, π
]
,

· · · can be gotten analogously. Hence, we know that the unique solution of
the problem (4.1) exists at t ≥ 0.
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5. Concluding remarks

In this paper, inspired by Fatullayev et al. [7] and Gasilov and Amrahov [9],
the coupled system of fuzzy delay differential equations (FDDCS) (1.1) with
fuzzy initial values and fuzzy source functions were solved by the methods of
separating steps and fuzzy items separation. In terms of Theorems 3.2 and
3.3, we obtained existence and uniqueness of solution to the FDDCS (1.1). We
notice that the solution is a triangular fuzzy function matrix which is made
up of real functional matrices. Moreover, an algorithm for solution procedure
and an example for confirmation were given.

Currently, more and more scholars have probed into the relevant differen-
tiable set-value problems [1], impulsive problems [8, 14] and differential inclu-
sion problems [18, 19]. As a result, for further study, we can introduce the
set-valued delay, the impulse or differential inclusion into the FDDCS (1.1),
and extend the approaches brought forward in this paper to deal with the new
problems.
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