COMMON FIXED POINT THEOREMS FOR GENERALIZED $\psi_{\rho_{\varphi}}$-WEAKLY CONTRACTIVE MAPPINGS IN G-METRIC SPACES

Jong Kyu Kim ${ }^{1}$, Manoj Kumar ${ }^{2}$, Preeti Bhardwaj ${ }^{3}$ and Mohammad Imdad ${ }^{4}$
${ }^{1}$ Department of Mathematics Education, Kyungnam University Changwon, Gyeongnam 51767, Korea e-mail: jongkyuk@kyungnam.ac.kr
${ }^{2}$ Department of Mathematics, Faculty of Sciences Baba Mastnath University, Asthal Bohar 124021, Rohtak, India e-mail: manojantil18@gmail.com; manojantil@bmu.ac.in
${ }^{3}$ Department of Mathematics, Faculty of Sciences
Baba Mastnath University, Asthal Bohar 124021, Rohtak, India
e-mail: bpreetibmu9@gmail.com
${ }^{4}$ Department of Mathematics, Aligarh Muslim University
Aligarh, India
e-mail: mhimdad@gmail.com

Abstract

In this paper, first of all we prove a fixed point theorem for $\psi_{\int} \varphi$-weakly contractive mapping. Next, we prove some common fixed point theorems for a pair of weakly compatible self maps along with E.A. property and (CLR) property. An example is also given to support our results.

1. Introduction

Dhage [4,5] introduced a new class of generalized metric spaces named D-metric spaces. Mustafa and Sims [7, 8] proved that most of claims concerning the fundamental topological structures are incorrect and introduced

[^0]appropriate notion of generalized metric spaces, named G-metric spaces. In fact, Mustafa, Sims and other authors proved many fixed point results for self mapping under certain conditions in $[7,8,9]$ and in other papers [$2,10,13,14]$.

2. Preliminaries

We give some definitions and their properties for our main results.
Definition 2.1. Let X be a nonempty set and $G: X^{3} \rightarrow R_{+}$be a function satisfying the following properties:
(i) $G(x, y, z)=0$ if $x=y=z$,
(ii) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(iii) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$,
(iv) $G(x, y, z)=G(y, z, x)=\cdots$ (symmetry in all three variables),
(v) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (triangle inequality).
The function G is called a G-metric on X and (X, G) is called a G-metric space.

Remark 2.2. Let (X, G) be a G-metric space. If $y=z$, then $G(x, y, y)$ is a quasi-metric on X. Hence (X, Q) is a G-metric space, where $Q(x, y)=$ $G(x, y, y)$ is a quasi-metric and since every metric space is a particular case of quasi-metric space, it follow that the notion of G-metric space is a generalization of a metric space.

Lemma 2.3. ([7]) Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 2.4. Let (X, G) be a G-metric space. A sequence $\left\{x_{n}\right\}$ in X is G-convergent if for $\epsilon>0$, there exists $x \in X$ and $k \in N$ such that for all $m, n \geq k, G\left(x, x_{n}, x_{m}\right)<\epsilon$.

Lemma 2.5. ([7]) Let (X, G) be a G-metric space. Then the following conditions are equivalent.
(i) $\left\{x_{n}\right\}$ is G-convergent to x,
(ii) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iii) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iv) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Jungck [6] introduced the new notion of weakly compatible maps as follows:
Definition 2.6. Let f and g be two self-mappings of a metric space (X, d). Then a pair (f, g) is said to be weakly compatible if they commute at coincidence points.

In 2002, Aamri and Moutawakil [1] introduced the notion of E.A. property as follows:

Definition 2.7. Let f and g be two self-mappings of a metric space (X, d). Then a pair (f, g) is said to satisfy E.A. property if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in X$.

In 2011, Sintunavarat and Kumam [12] introduced the notion of (CLR) property as follows:

Definition 2.8. Let f and g be two self- mappings of a metric space (X, d). Then a pair (f, g) is said to satisfy $\left(C L R_{f}\right)$ property if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=f x$ for some $x \in X$.

3. Main Result

In this section, we give a new notion of $\psi_{\int} \varphi^{\text {-weakly }}$ contractive mapping and prove a fixed point theorem for a single map in G-metric spaces. Also, common fixed point theorems for a pair of weakly compatible maps along with E. A. property and (CLR) property are proved.

Definition 3.1. Let (X, G) be a G-metric space and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a Lebesgue integrable mapping. A mapping $T: X \rightarrow X$ is said to be

$$
\begin{equation*}
\psi\left(\int_{0}^{G(T x, T y, T z)} \varphi(t) d t\right) \leq \psi\left(\int_{0}^{G(x, y, z)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(x, y, z)} \varphi(t) d t\right), \tag{3.1}
\end{equation*}
$$

where $\psi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function and $\phi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous and non-decreasing function such that $\phi(t)=0=\psi(t)$ if and only if $t=0$.

Theorem 3.2. Let (X, G) be a complete G-metric space and $T: X \rightarrow X$
 integrable mapping which is summable, non-negative and such that

$$
\begin{equation*}
\int_{0}^{\epsilon} \varphi(t) d t>0 \tag{3.2}
\end{equation*}
$$

for each $\epsilon>0$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function and $\phi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous and non-decreasing function such that $\phi(t)=0=\psi(t)$ if and only if $t=0$. Then T has a unique fixed point.

Proof. Let $x_{0} \in X$ be an arbitrary point and choose a sequence $\left\{x_{n}\right\}$ in X such that $x_{n}=T x_{n-1}$ for all $n>0$. From (3.1), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G\left(x_{n+1}, x_{n}, x_{n}\right)} \varphi(t) d t\right)= & \psi\left(\int_{0}^{G\left(T x_{n}, T x_{n-1}, T x_{n-1}\right)} \varphi(t) d t\right) \\
\leq & \psi\left(\int_{0}^{G\left(x_{n}, x_{n-1}, x_{n-1}\right)} \varphi(t) d t\right) \\
& -\phi\left(\int_{0}^{G\left(x_{n}, x_{n-1}, x_{n-1}\right)} \varphi(t) d t\right) \\
\leq & \psi\left(\int_{0}^{G\left(x_{n}, x_{n-1}, x_{n-1}\right)} \varphi(t) d t\right) .
\end{aligned}
$$

Using monotone property of ψ-function, we have

$$
\begin{equation*}
\int_{0}^{G\left(x_{n+1}, x_{n}, x_{n}\right)} \varphi(t) d t \leq \int_{0}^{G\left(x_{n}, x_{n-1}, x_{n-1}\right)} \varphi(t) d t \tag{3.3}
\end{equation*}
$$

Let $y_{n}=\int_{0}^{G\left(x_{n+1}, x_{n}, x_{n}\right)} \varphi(t) d t$. Then $0 \leq y_{n} \leq y_{n-1}$ for all $n>0$. It follows that the sequence $\left\{y_{n}\right\}$ is monotone decreasing and lower bounded. So, there exists $r \geq 0$, such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{G\left(x_{n+1}, x_{n}, x_{n}\right)} \varphi(t) d t=\lim _{n \rightarrow \infty} y_{n}=r .
$$

Then, by the lower semi-continuity of ϕ, we get

$$
\phi(r) \leq \liminf _{n \rightarrow \infty} \phi\left(\int_{0}^{G\left(x_{n}, x_{n-1}, x_{n-1}\right)} \varphi(t) d t\right)
$$

Let $r>0$. Taking upper limit as $n \rightarrow \infty$ on either side of (3.3), we get

$$
\begin{aligned}
\psi(r) & \leq \psi(r)-\liminf _{n \rightarrow \infty} \phi\left(\int_{0}^{G\left(x_{n}, x_{n-1}, x_{n-1}\right)} \varphi(t) d t\right) \\
& \leq \psi(r)-\phi(r),
\end{aligned}
$$

which is a contradiction. Thus, $r=0$, that is,

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{G\left(x_{n+1}, x_{n}, x_{n}\right)} \varphi(t) d t\right)=\lim _{n \rightarrow \infty} y_{n}=0 .
$$

Therefore, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(x_{n+1}, x_{n}, x_{n}\right)=0 \tag{3.4}
\end{equation*}
$$

Now, we prove that $\left\{x_{n}\right\}$ is a G-Cauchy sequence. Suppose that $\left\{x_{n}\right\}$ is not a G-Cauchy sequence, there exists an $\epsilon>0$ and subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ with $n(k)>m(k)>k$ such that

$$
\begin{equation*}
G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right) \geq \epsilon \tag{3.5}
\end{equation*}
$$

Let $m(k)$ be the least positive integer exceeding $n(k)$ satisfying (3.5) such that

$$
\begin{equation*}
G\left(x_{n(k)-1}, x_{m(k)}, x_{m(k)}\right)<\epsilon, \tag{3.6}
\end{equation*}
$$

for every integer k. Then, we have

$$
\begin{aligned}
\epsilon & \leq G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right) \\
& \leq G\left(x_{n(k)}, x_{n(k)-1}, x_{n(k)-1}\right)+G\left(x_{n(k)-1}, x_{m(k)}, x_{m(k)}\right) \\
& <\epsilon+G\left(x_{n(k)}, x_{n(k)-1}, x_{n(k)-1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
0<\delta=\int_{0}^{\epsilon} \varphi(t) d t & \leq \int_{0}^{G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right)} \varphi(t) d t \\
& \leq \int_{0}^{\epsilon+G\left(x_{n(k)}, x_{n(k)-1}, x_{n(k)-1}\right)} \varphi(t) d t
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using (3.4), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{G\left(x_{n}(k), x_{m}(k), x_{m}(k)\right)} \varphi(t) d t=\delta . \tag{3.7}
\end{equation*}
$$

By the triangular inequality,

$$
\begin{aligned}
G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right) \leq & G\left(x_{n(k)-1}, x_{n(k)-1}, x_{n(k)-1}\right) \\
& +G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right) \\
& +G\left(x_{m(k)-1}, x_{m(k)-1}, x_{m(k)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right) \leq & G\left(x_{n(k)-1}, x_{n(k)}, x_{n(k)}\right) \\
& +G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right) \\
& +G\left(x_{m(k)}, x_{m(k)-1}, x_{m(k)-1}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \int_{0}^{G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right)} \varphi(t) d t \\
& \leq \int_{0}^{G\left(x_{n(k)}, x_{n(k)-1}, x_{n(k)-1}\right)+G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)+G\left(x_{m(k)-1}, x_{m(k)-1}, x_{m(k)}\right)} \varphi(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)} \varphi(t) d t \\
& \leq \int_{0}^{G\left(x_{n(k)-1}, x_{n(k)}, x_{n(k)}\right)+G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right)+G\left(x_{m(k)}, x_{m(k)-1}, x_{m(k)-1}\right)} \varphi(t) d t
\end{aligned}
$$

Letting $\lim k \rightarrow \infty$ in the above two inequalities and using (3.4) and (3.7), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)} \varphi(t) d t=\delta \tag{3.8}
\end{equation*}
$$

Taking $x=x_{n(k)-1}, y=x_{m(k)-1}, z=x_{m(k)-1}$ in (3.1), we get

$$
\begin{aligned}
& \psi\left(\int_{0}^{G\left(T x_{n(k)-1}, T x_{m(k)-1}, T x_{m(k)-1}\right)} \varphi(t) d t\right) \\
& \quad=\psi\left(\int_{0}^{G\left(x_{n(k)}, x_{m(k)}, x_{m(k)}\right)} \varphi(t) d t\right) \\
& \quad \leq \psi\left(\int_{0}^{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)} \varphi(t) d t\right) \\
& \quad-\phi\left(\int_{0}^{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)} \varphi(t) d t\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$, using (3.7), (3.8) and properties of ψ and ϕ, we get

$$
\psi(\delta) \leq \psi(\delta)-\phi(\delta)
$$

which is a contradiction from $\delta>0$. Hence $\left\{x_{n}\right\}$ is a G-Cauchy sequence.
Since X is a complete metric space, there exists u in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=u \tag{3.9}
\end{equation*}
$$

Taking $x=x_{n-1}, y=u, z=u$ in (3.1), we get

$$
\begin{aligned}
\psi\left(\int_{0}^{G\left(T x_{n-1}, T u, T u\right)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G\left(x_{n}, T u, T u\right)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G\left(x_{n-1}, u, u\right)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G\left(x_{n-1}, u, u\right)} \varphi(t) d t\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, using (3.9) and properties of ψ and ϕ, we get

$$
\psi\left(\int_{0}^{G(u, T u, T u)} \varphi(t) d t\right) \leq \psi(0)-\phi(0)=0
$$

which implies that $\int_{0}^{G(u, T u, T u)} \varphi(t) d t=0$. Thus, $G(u, T u, T u)=0$, this means that, $u=T u$.

Now, we prove that u is the unique fixed point of T. Let v be an another common fixed point of T, that is, $T v=v$.

Putting $x=u, y=v, z=v$ in (3.1), we get

$$
\begin{aligned}
\psi\left(\int_{0}^{G(T u, T v, T v)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right)
\end{aligned}
$$

Hence we have

$$
\phi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right)=0
$$

which implies that, $G(u, v, v)=0$, that is, $u=v$. This completes the proof.

Theorem 3.3. Let (X, G) be a G-metric space and let f and g be selfmappings on X satisfying the following:

$$
\begin{gather*}
g X \subset f X \tag{3.10}\\
f X \text { or } g X \text { is complete } \tag{3.11}
\end{gather*}
$$

and
$\psi\left(\int_{0}^{G(g x, g y, g z)} \varphi(t) d t\right) \leq \psi\left(\int_{0}^{G(f x, f y, f z)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f x, f y, f z)} \varphi(t) d t\right)$,
for all x, y, z in X, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a Lebesgue integrable mapping which is summable, non-negative and such that

$$
\begin{equation*}
\int_{0}^{\epsilon} \varphi(t) d t>0, \text { for each } \epsilon>0 \tag{3.13}
\end{equation*}
$$

and $\psi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function and $\phi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous and non-decreasing function such that $\phi(t)=0=\psi(t)$ if and only if $t=0$. Then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let $x_{0} \in X$. From (3.10), we can construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X by $y_{n}=f x_{n+1}=g x_{n}$, for each $n=0,1,2, \ldots$. Then, from (3.12), we have

$$
\begin{align*}
\psi\left(\int_{0}^{G\left(y_{n+1}, y_{n}, y_{n}\right)} \varphi(t) d t\right)= & \psi\left(\int_{0}^{G\left(g x_{n+1}, g x_{n}, g x_{n}\right)} \varphi(t) d t\right) \\
\leq & \psi\left(\int_{0}^{G\left(f x_{n+1}, f x_{n}, f x_{n}\right)} \varphi(t) d t\right) \\
& -\phi\left(\int_{0}^{G\left(f x_{n+1}, f x_{n}, f x_{n}\right)} \varphi(t) d t\right) \\
\leq & \psi\left(\int_{0}^{G\left(y_{n}, y_{n-1}, y_{n-1}\right)} \varphi(t) d t\right) \\
& -\phi\left(\int_{0}^{G\left(y_{n}, y_{n-1}, y_{n-1}\right)} \varphi(t) d t\right) \\
\leq & \psi\left(\int_{0}^{G\left(y_{n}, y_{n-1}, y_{n-1}\right)} \varphi(t) d t\right) \tag{3.14}
\end{align*}
$$

Using monotone property of function ψ, we have

$$
\int_{0}^{G\left(y_{n+1}, y_{n}, y_{n}\right)} \varphi(t) d t \leq \int_{0}^{G\left(y_{n}, y_{n-1}, y_{n-1}\right)} \varphi(t) d t
$$

Let $u_{n}=\int_{0}^{G\left(y_{n+1}, y_{n}, y_{n}\right)} \varphi(t) d t$. Then $0 \leq u_{n} \leq u_{n-1}$ for all $n>0$. It follows that the sequence $\left\{u_{n}\right\}$ is monotone decreasing and lower bounded. So, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{G\left(y_{n+1}, y_{n}, y_{n}\right)} \varphi(t) d t=\lim _{n \rightarrow \infty} u_{n}=r
$$

Then, from the lower semi-continuity of ϕ, we have

$$
\phi(r) \leq \liminf _{n \rightarrow \infty} \phi\left(\int_{0}^{G\left(y_{n}, y_{n-1}, y_{n-1}\right)} \varphi(t) d t\right)
$$

Let $r>0$ and taking upper limit as $n \rightarrow \infty$ on either side of (3.14), we get

$$
\begin{aligned}
\psi(r) & \leq \psi(r)-\liminf _{n \rightarrow \infty} \phi\left(\int_{0}^{G\left(y_{n}, y_{n-1}, y_{n-1}\right)} \varphi(t) d t\right) \\
& \leq \psi(r)-\phi(r)
\end{aligned}
$$

which is a contradiction. Then, $r=0$, that is,

$$
\lim _{n \rightarrow \infty} \int_{0}^{G\left(y_{n+1}, y_{n}, y_{n}\right)} \varphi(t) d t=\lim _{n \rightarrow \infty} u_{n}=0
$$

Therefore, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G\left(y_{n+1}, y_{n}, y_{n}\right)=0 \tag{3.15}
\end{equation*}
$$

Now, we prove that $\left\{y_{n}\right\}$ is a G-Cauchy sequence. Suppose that $\left\{y_{n}\right\}$ is not a G-Cauchy sequence. Then, there exists, an $\epsilon>0$ and subsequences $\left\{y_{m}(k)\right\}$ and $\left\{y_{n}(k)\right\}$ of $\left\{y_{n}\right\}$ with $n(k)>m(k)$ such that

$$
\begin{equation*}
G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right) \geq \epsilon \tag{3.16}
\end{equation*}
$$

Let $m(k)$ be the least positive integer exceeding $n(k)$ satisfying (3.16) such that

$$
\begin{equation*}
G\left(y_{n(k)-1}, y_{m(k)}, y_{m(k)}\right)<\epsilon, \text { for every integer } k . \tag{3.17}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
\epsilon & \leq G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right) \\
& \leq G\left(y_{n(k)}, y_{n(k)-1}, y_{n(k)-1}\right)+G\left(y_{n(k)-1}, y_{m(k)}, y_{m(k)}\right) \\
& <\epsilon+G\left(y_{n(k)}, y_{n(k)-1}, y_{n(k)-1}\right) .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
0<\delta & =\int_{0}^{\epsilon} \varphi(t) d t \\
& \leq \int_{0}^{G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right)} \varphi(t) d t \leq \int_{0}^{\epsilon+G\left(y_{n(k)}, y_{n(k)-1}, y_{n(k)-1}\right)} \varphi(t) d t
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using (3.15), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right)} \varphi(t) d t=\delta \tag{3.18}
\end{equation*}
$$

By the triangular inequality, we have

$$
\begin{aligned}
G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right) \leq & G\left(y_{n(k)}, y_{n(k)-1}, y_{n(k)-1}\right) \\
& +G\left(y_{n(k)-1}, y_{m(k)-1}, y_{m(k)-1}\right) \\
& +G\left(y_{m(k)-1}, y_{m(k)-1}, y_{m(k)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
G\left(y_{n(k)-1}, y_{m(k)-1}, y_{m(k)-1}\right) \leq & G\left(y_{n(k)-1}, y_{n(k)}, y_{n(k)}\right) \\
& +G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right) \\
& +G\left(y_{m(k)}, y_{m(k)-1}, y_{m(k)-1}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \int_{0}^{G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right)} \varphi(t) d t \\
& \leq \int_{0}^{G\left(y_{n(k)}, y_{n(k-1)}, y_{n(k-1)}\right)+G\left(y_{n(k)-1}, y_{m(k)-1}, y_{m(k)-1}\right)+G\left(y_{m(k)-1}, y_{m(k)-1}, y_{m(k)}\right)} \varphi(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{G\left(y_{n(k)-1}, y_{m(k)-1}, y_{m(k)-1}\right)} \varphi(t) d t \\
& \leq \int_{0}^{G\left(y_{n(k)-1}, y_{n(k)}, y_{n(k)}\right)+G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right)+G\left(y_{m(k)}, y_{m(k)-1}, y_{m(k)-1}\right)} \varphi(t) d t
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above two inequalities and using (3.15) and (3.18), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right)} \varphi(t) d t=\delta \tag{3.19}
\end{equation*}
$$

Taking $x=x_{n(k)}, y=x_{m(k)}, z=x_{m(k)}$ in (3.1), we get

$$
\begin{aligned}
\psi\left(\int_{0}^{G\left(g x_{n(k)}, g x_{m(k)}, g x_{m(k)}\right)} \varphi(t) d t\right)= & \psi\left(\int_{0}^{G\left(y_{n(k)}, y_{m(k)}, y_{m(k)}\right)} \varphi(t) d t\right) \\
\leq & \psi\left(\int_{0}^{G\left(f x_{n(k)}, f x_{m(k)}, f x_{m(k)}\right)} \varphi(t) d t\right) \\
& -\phi\left(\int_{0}^{G\left(x_{n(k)-1}, x_{m(k)-1}, x_{m(k)-1}\right)} \varphi(t) d t\right) \\
= & \psi\left(\int_{0}^{G\left(y_{n(k)-1}, y_{m(k)-1}, y_{m(k)-1}\right)} \varphi(t) d t\right) \\
& -\phi\left(\int_{0}^{G\left(y_{n(k)-1}, y_{m(k)-1}, y_{m(k)-1}\right)} \varphi(t) d t\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$, using (3.18), (3.19) and properties of ψ and ϕ, we get

$$
\psi(\delta) \leq \psi(\delta)-\phi(\delta)
$$

which is a contradiction from $\delta>0$. Thus $\left\{y_{n}\right\}$ is a G-Cauchy sequence.
Now, since $f X$ is complete, there exists a point $u \in f X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} f x_{n+1}=u \tag{3.20}
\end{equation*}
$$

Now, we prove that u is the common fixed point of f and g. Since $u \in f X$, there exists a point $p \in X$ such that $f p=u$. From (3.12), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G(f p, g p, g p)} \varphi(t) d t\right)= & \lim _{n \rightarrow \infty} \psi\left(\int_{0}^{G\left(g x_{n}, g p, g p\right)} \varphi(t) d t\right) \\
\leq & \lim _{n \rightarrow \infty} \psi\left(\int_{0}^{G\left(f x_{n}, f p, f p\right)} \varphi(t) d t\right) \\
& -\lim _{n \rightarrow \infty} \phi\left(\int_{0}^{G\left(f x_{n}, f p, f p\right)} \varphi(t) d t\right)
\end{aligned}
$$

From (3.20) and using properties of ψ and ϕ, we get

$$
\psi\left(\int_{0}^{G(f p, g p, g p)} \varphi(t) d t\right) \leq \psi(0)-\phi(0)=0
$$

implies that,

$$
\psi\left(\int_{0}^{G(f p, g p, g p)} \varphi(t) d t\right)=0
$$

Thus, $G(f p, g p, g p)=0$, that is, $f p=g p=u$. Hence u is the coincidence point of f and g.

Now, we show that u is the common fixed point of f and g.
Since, $f p=g p$ and f, g are weakly compatible maps, we have $f u=f g p=$ $g f p=g u$.

We claim that $f u=g u=u$. Suppose that $g u \neq u$. From (3.12), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G(g u, u, u)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G(g u, g p, g p)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G(f u, f p, f p)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f u, f p, f p)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{G(g u, u, u)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(g u, u, u)} \varphi(t) d t\right) \\
& <\psi\left(\int_{0}^{G(g u, u, u)} \varphi(t) d t\right) .
\end{aligned}
$$

This is a contradiction. Thus, we get, $g u=u=f u$. Hence u is the common fixed point of f and g.

For the uniqueness, let v be an another common fixed point of f and g, We claim that $u=v$. Suppose that $u \neq v$. From (3.2), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G(g v, g v, g v)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G(f u, f v, f v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f v, f v, f v)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right) \\
& <\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right) .
\end{aligned}
$$

This is a contraction. Thus, we get, $u=v$. Hence u is the unique common fixed point of f and g. This completes the proof.

Theorem 3.4. Let (X, G) be a G-metric space and let f and g be weakly compatible self-maps of X satisfying (3.12), (3.13) and the following conditions:

$$
\begin{gather*}
f \text { and } g \text { satisfy the E.A. property, } \tag{3.21}\\
\quad f X \text { is closed subset of } X . \tag{3.22}
\end{gather*}
$$

Then f and g have a unique common fixed point.
Proof. Since f and g satisfy the E.A. property, there exists a sequence $\left\{x_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} f x_{n}=x_{0}
$$

for some $x_{0} \in X$. Since $f X$ is closed subset of X, using (3.21), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=f z \text { for some } z \in X \tag{3.23}
\end{equation*}
$$

Now, we claim that $f z=g z$. From (3.12), we have

$$
\psi\left(\int_{0}^{G\left(g x_{n}, g z, g z\right)} \varphi(t) d t\right) \leq \psi\left(\int_{0}^{G\left(g x_{n}, f z, f z\right)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G\left(f x_{n}, f z, f z\right)} \varphi(t) d t\right) .
$$

From (3.23) and properties of ψ and ϕ, we have

$$
\psi\left(\int_{0}^{G\left(f x_{n}, g z, g z\right)} \varphi(t) d t\right) \leq \psi(0)-\phi(0)=0
$$

it implies that

$$
\int_{0}^{G(f z, g z, g z)} \varphi(t) d t=0
$$

Thus, we have, $G(f z, g z, g z)=0$, and so $f z=g z$.

Now, we show that $g z$ is common fixed point of f and g. Suppose that, $g z \neq f z$. Since f and g are weakly compatible, $g f z=f g z$ and therefore, $f f z=g g z$. From (3.12), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G\left(g x_{n}, g g z, g g z\right)} \varphi(t) d t\right) & \leq \psi\left(\int_{0}^{G(f z, f g z, f g z)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f z, f g z, f g z)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{G(g z, g g z, g g z)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(g z, g g z, g g z)} \varphi(t) d t\right) \\
& <\psi\left(\int_{0}^{G(g z, g g z, g g z)} \varphi(t) d t\right),
\end{aligned}
$$

which is a contradiction. Thus, $g g z=g z$. Hence $g z$ is the common fixed point of f and g.

Finally, we show that the common fixed point is unique. Let u and v be two common fixed points of f and g such that $u \neq v$. From (3.12), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G(g u, g v, g v)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G(f u, f v, f v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f u, f v, f v)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right) \\
& <\psi\left(\int_{0}^{G(u, v, v)} \varphi(t) d t\right)
\end{aligned}
$$

which is a contradiction. Therefore $u=v$. This completes the proof.

Theorem 3.5. Let (X, G) be a G-metric space and let f and g be weakly compatible self-maps of X satisfying (3.12), (3.13) and the following:

$$
\begin{equation*}
f \text { and } g \text { satisfy }\left(C L R_{f}\right) \text { property. } \tag{3.24}
\end{equation*}
$$

Then f and g have a unique fixed point.
Proof. Since f and g satisfy the $\left(C L R_{f}\right)$ property, there exists a sequence $\left\{x_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=f x
$$

for some $x \in X$. From (3.12), we have

$$
\psi\left(\int_{0}^{G\left(g x_{n}, g x, g x\right)} \varphi(t) d t\right) \leq \psi\left(\int_{0}^{G\left(f x_{n}, f x, f x\right)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G\left(f x_{n}, f x, f x\right)} \varphi(t) d t\right) .
$$

Letting $n \rightarrow \infty$ and using the properties of ψ and ϕ, we get

$$
\begin{aligned}
\psi\left(\int_{0}^{G(f x, g x, g x)} \varphi(t) d t\right) & \leq \psi\left(\int_{0}^{G(f x, f x, f x)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f x, f x, f x)} \varphi(t) d t .\right) \\
& =\psi(0)-\phi(0)=0
\end{aligned}
$$

Hence $\int_{0}^{G(f x, g x, g x)} \varphi(t) d t=0$. Thus, $G(f x, g x, g x)=0$, that is, $f x=g x$. Let $w=f x=g x$. Since f and g are weakly compatible, $f g x=g f x$, implies that, $f w=f g x=g f x=g w$.

Now, we claim that $T w=w$. Suppose that $T w \neq w$. Then. from (3.12), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G(g w, w, w)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G(g w, g x, g x)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G(f w, f x, f x)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f w, f x, f x)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{G(g w, w, w)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(g w, w, w)} \varphi(t) d t\right) \\
& <\psi\left(\int_{0}^{G(g w, w, w)} \varphi(t) d t\right),
\end{aligned}
$$

which is a contradiction. Hence $f w=w=g w$. Hence, w is the common fixed point of f and g.

Finally, we show that the common fixed point is unique. Let v be an another common fixed point of f and g such that $f v=v=g v$ and $w \neq v$. From (3.12), we have

$$
\begin{aligned}
\psi\left(\int_{0}^{G(w, v, v)} \varphi(t) d t\right) & =\psi\left(\int_{0}^{G(g w, g v, g v)} \varphi(t) d t\right) \\
& \leq \psi\left(\int_{0}^{G(f w, f v, f v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(f w, f v, f v)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{G(w, v, v)} \varphi(t) d t\right)-\phi\left(\int_{0}^{G(w, v, v)} \varphi(t) d t\right) \\
& <\psi\left(\int_{0}^{G(w, v, v)} \varphi(t) d t\right)
\end{aligned}
$$

which is a contradiction. Therefore $w=v$. This completes the proof.
Example 3.6. Let $X=[1, \infty)$ and let $G: X^{3} \rightarrow R_{+}$be the G-metric defined as follows:

$$
G(x, y, z)=\max \{|x-y|,|y-z|,|x-z|\} \text { for all } x, y, z \in X .
$$

Clearly (X, G) is a G-metric space. Define $f, g: X \rightarrow X$ by $f(x)=x$ and $g(x)=\frac{x+1}{2}$. Let $\left\{x_{n}\right\}=\left\{1+\frac{1}{n}\right\}$. Then, we have

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=1=f(1) \in X
$$

Hence, the pair (f, g) satisfy $\left(C L R_{f}\right)$-property. Let us define $\psi(t)=2 t$, $\varphi(t)=t$ and $\phi(t)=\frac{t}{2}$. Without loss of generality, we assume that for $x>y>z$

$$
\begin{aligned}
G(g x, g y, g z) & =G\left(\frac{x+1}{2}, \frac{y+1}{2}, \frac{z+1}{2}\right) \\
& =\max \left(\frac{|x-y|}{2}, \frac{|y-z|}{2}, \frac{|x-z|}{2}\right)=\frac{|x-z|}{2} .
\end{aligned}
$$

Clearly, $G(f x, f y, f z)=|x-z|$. Also, we have

$$
\begin{gathered}
\psi \int_{0}^{\frac{|x-z|}{2} t d t}=\psi\left(\frac{t^{2}}{2}\right)=\psi\left(\frac{|x-z|^{2}}{8}\right)=2 \frac{|x-z|^{2}}{8}=\frac{|x-z|^{2}}{4}, \\
\psi \int_{0}^{|x-z|} t d t=\psi\left(\frac{|x-z|^{2}}{2}\right)=|x-z|^{2}
\end{gathered}
$$

and

$$
\phi\left(\frac{|x-z|^{2}}{2}\right)=\frac{|x-z|^{2}}{4}=|x-z|^{2}-\frac{|x-z|^{2}}{4}=\frac{3}{4}|x-z|^{2} .
$$

By applying all these, we see that equation (3.12) is satisfied. Hence all the conditions of Theorem 3.5 are satisfied and f and g have a unique common fixed point $x=1$.

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

[1] M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181-188.
[2] M. Asadi and P. Salimi, Some fixed point and common fixed point theorems on G-metric spaces, Nonlinear Funct. Anal. Appl., 21(3) (2016), 5213-530.
[3] A. Branciari, A Fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29(9) (2002), 531-536.
[4] B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. , Soc., 84 (1982), 329-336.
[5] B.C. Dhage, Generalized metric spaces and topological structures, Anal. St. Univ. Al. I. Cuza, Iasi Ser. Mat., 46(1) (2000), 3-24.
[6] G. Jungck, Common fixed points for non-continuous non-self mappings on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199-212.
[7] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain), 2003 (2003), 189-198.
[8] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
[9] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorems for mappings on complete G-metric spaces, Fixed Point Theory Appl., Article ID 189870, 2008 (2008), 10 pages.
[10] B. Nurwahyu, Some properties of common fixed point for two self-mappings on some contraction mappings in quasi αb-metric space, Nonlinear Funct. Anal. Appl., 25(1) (2020), 175-188
[11] W. Shatanawi, Fixed point theory for contractive mappings satisfying φ-maps in G metric spaces, Fixed Point Theory Appl., Article ID 181670, 2010 (2010), 9 pages.
[12] W. Sintunavarat and P. Kumam, Common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space, J. Appl. Math., Article ID 637958, 2011 (2011), 14 pages.
[13] D. Singh, V. Chauhan and V. Joshi, Results on n-tupled coincidence and fixed points in partially ordered G-metric spaces via symmetric (ϕ, ψ)-contractions Nonlinear Funct. Anal. Appl., 20(3) (2015), 491-516.
[14] D. Singh, V. Joshi and J.K. Kim, Existence of solution to Bessel-type boundary value problem via G-cyclic F-contractive mapping with graphical veriication, Nonlinear Funct. Anal. Appl., 23(2) (2018), 205-224.

[^0]: ${ }^{0}$ Received December 14, 2020. Revised March 7, 2021. Accepted March 19, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: G-metric space, $\psi_{\int} \varphi^{\text {-weakly contractive mapping, weakly compatible, E.A. }}$ property, (CLR) property.
 ${ }^{0}$ Corresponding author: M. Kumar(manojantil18@gmail.com).

