Acknowledgement
The authors are grateful to the anonymous referees for their valuable comments and suggestions which improve the paper.
References
- A. Alam, Q.H. Khan and M. Imdad, Enriching the recent coincidence theorem for nonlinear contraction in ordered metric spaces, Fixed point theory Appl., 2015, 141 (2015), 1-14. https://doi.org/10.1186/1687-1812-2015-1
- A. Alam, Q.H. Khan and M.Imdad, Discussion on some recent order-theoretic metrical coincidence theorems involving nonlinear contractions, J. Funct. Spaces, Vol 2016, Article ID 6275367, 1-11.
- S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- L.B. Ciric and S.B. Presic, On Presic type generalization of Banach contraction principle, Acta Math. Uni. Com., 76 (2007), 143-147.
- R. George, K.P. Freshman and R. Palanquin, A generalized fixed point theorem of Ciric type in cone metric spaces and application to Markov process, Fixed Point Theory Appl., 2011 : 85 (2011) doi 10.1186/1687-1812-2011-85.
- R. Kannan, Some results on fixed point, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
- Q.H. Khan and T. Rashid, Coupled coincidence point of φ-contraction type T-coupling in partial metric spaces, J. Math. Anal., 8 (2018), 136-149,
- N.V. Long and N. Xian Thuan, Some fixed point theorems of Presic-Ciric type, Acts Uni.Plus, 30 (2012), 237-249.
- J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 62(2) (1977), 344-348. https://doi.org/10.1090/S0002-9939-1977-0436113-5
- S. Malhotra, S. Shukla and S. Sen, A generalization of Banach contraction principle in ordered cone metric spaces, J. Adv. Math. Stud. 5(2) (2012), 59-67.
- S.B. Presic, Sur la convergence des suites. (French), C. R. Cad Sci. Paris, 260 (1965), 3828-73830.
- S.B. Presic, Sur une classe dinequations aux differences nite et sur la convergence de certaines suites. (French), Publ. Inst. Math. Beograd (N.S.), 19(5) (1965), 75-78.
- M. Pacurar, A multi-step iterative method for approximating fixed point of Presic-Kannan operators, Acta. Math. Univ. Comenianae, Vol.LXXIX, 1 (2010), 77-88.
- S. Riech, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
- I.A. Rus, An iterative method for the solution of the equation x = f (x,...), Rev. Anal. Numer. Theor. Approx., 10(1) (1981), 95-100.
- B.E. Rhoades, A comparison of various definitions of contractive mappings , Trans. Amer. Math. Soc., 226 (1977), 257-290. https://doi.org/10.2307/1997954
- T. Rashid, Q.H. Khan and H. Aydi, On Strong coupled coincidence points of g-coupling and an application, J. Funct. Spaces, 2018, Article ID 4034535; 10.
- T. Rashid, N. Alharbi, Q.H. Khan, H. Aydi and C. Ozel, Order-Theoretic metrical coincidence theorem involving point (φ, ψ)- Contractions, J. Math. Anal., 9 (2018), 119-135.