References
- A. Kuznetsova, H. Rom, N. Alldrin, et al.(2020), The open images dataset V4: Unified image classification, object detection, and visual relationship detection at scale. IJCV.
- C. Song, Y. Kwon, D. Kim, K. Kang(2013), "A study on the improvement measures for the prevention of fall accidents on the ladder at construction sites." 2013 Spring Conference of Korea Saf. Manag. Sci., 225-234.
- D. M. W. Powers(2011), "Evaluation: From precision, recall and F-Measure to ROC, informedness, markedness & correlation." J. Machine Learning Technologies, 2(1):37-63.
- G. Jocher, Y. Kwon, Y., Guigarfr, J. Veitch-Michaelis, et al.(2020), "Ultralytics/volov3: 43.1mAP@0.5:0. 95 on COCO2014(version v7)." Zenodo. http://doi.org/10.5281/zenodo.3785397
- H. Kim, S. Lee, W. Jung, B. Ryu(2009), "A study on the preventive measures against fall injuries in manufacturing industry focusing on the portable ladders." J. Korean Soc. Saf., 24(6):136-143.
- H. Lee(2018), "An efficient deep learning platform for object detection." Master's thesis, Soongsil University.
- H. Sim, K. Kang(2017), "A study on the death accident analysis of ladder and prevention measures for fall accidents." J. Korea Saf. Manag. Sci., 19(4):95-104. https://doi.org/10.12812/KSMS.2017.19.4.95
- I. Krasin, T. Duerig, N. Alldrin, et al.(2017), Open images: A public dataset for large-scale multi-label and multi-class image classification, 2017. https://stor-age.googleapis.com/openimages/web/index.html
- International Labour Organization(ILO)(2020), Statistics on safety and health at work. https://ilostat.ilo.org/topics/safety-and-health-at-work/
- J. Redmon, A. Farhadi(2017a), "YOLO9000: Better, faster, stronger." The IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE.
- J. Redmon, A. Farhadi(2017b), YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767.
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi (2016), "You only look once: Unified, real-time object detection." The IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE.
- M. Everingham, L. V. Gool, C. K. I. Williams, et al.(2010), "The pascal Visual Object Classes(VOC) challenge." Int. J. Comput. Vis., 88:303-338. https://doi.org/10.1007/s11263-009-0275-4
- Ministry of Employment and Labor(MOEL)(2018), Analysis of industrial accidents in 2017.
- Ministry of Employment and Labor(MOEL)(2020), Status of industrial accidents in 2019. http://www.kosha.or.kr/kosha/data/industrialAccidentStatus.do
- N. D. Nath, A. H. Behzadan, S. G. Paal(2020), "Deep learning for site safety: Real-time detection of personal protective equipment." Automation on Construction, 112:103085. https://doi.org/10.1016/j.autcon.2020.103085
- Occupational Safety and Health Research Institute (OSHRI)(2015), Cause of industrial accidents in 2014. OSHRI Research Report.
- S. Park, S. Yoon, J. Heo(2019), "Image-based automatic detection of construction helmets using R-FCN and transfer learning." J. Korea Soc. Civil Eng., 39(3):399-407. https://doi.org/10.12652/KSCE.2019.39.3.0399
- The Korea Occupational Safety and Health Agency (KOSHA)(2010-2019), Industrial accident statistics.
- W. Jang, D. Shin(2009), "WSN safety monitoring using RSSI-based ranging technique in a construction site." J. of Korean Soc. of Societal Security, 2(2):49-54.
- Xie, Liangbin(2019), "Hardhat." Havard Dataverse, V1. http://doi.org/10.7910/DVN/7-CBGOS