DOI QR코드

DOI QR Code

ALGEBRAIC RANKS OF THE FUNDAMENTAL GROUPS OF HIGH DIMENSIONAL GRAPH MANIFOLDS

  • Received : 2020.04.27
  • Accepted : 2020.11.02
  • Published : 2021.03.31

Abstract

The fundamental group of a high dimensional graph manifold canonically has a graph of groups structure. We analyze the group action on the associated Bass-Serre tree and study the algebraic ranks of the fundamental groups of high dimensional graph manifolds.

References

  1. W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2) 122 (1985), no. 3, 597-609. https://doi.org/10.2307/1971331
  2. W. Ballmann and P. Eberlein, Fundamental groups of manifolds of nonpositive curvature, J. Differential Geom. 25 (1987), no. 1, 1-22. http://projecteuclid.org/euclid.jdg/1214440722
  3. B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66 pp. https://doi.org/10.1142/S0218196712500166
  4. K. Burns and R. Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Etudes Sci. Publ. Math. No. 65 (1987), 35-59. https://doi.org/10.1007/BF02698934
  5. T. Delzant, Sur l'accessibilite acylindrique des groupes de presentation finie, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 4, 1215-1224. https://doi.org/10.5802/aif.1714
  6. R. Frigerio, J.-F. Lafont, and A. Sisto, Rigidity of high dimensional graph manifolds, Asterisque No. 372 (2015), xxi+177 pp.
  7. P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419-436. https://doi.org/10.1112/plms/s3-4.1.419
  8. R. Kim, Algebraic ranks of CAT(0) groups, Algebraic & Geometric Topology 14 (2014), no. 3, 1627-1648. https://doi.org/10.2140/agt.2014.14.1627
  9. D. V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100 pp. https://doi.org/10.1090/memo/0843
  10. A. Ould Houcine, Embeddings in finitely presented groups which preserve the center, J. Algebra 307 (2007), no. 1, 1-23. https://doi.org/10.1016/j.jalgebra.2006.07.015
  11. G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. (2) 96 (1972), 296-317. https://doi.org/10.2307/1970790
  12. J.-P. Serre, Trees, translated from the French by John Stillwell, Springer-Verlag, Berlin, 1980.