References
- L. L. Avramov and H.-B. Foxby, Gorenstein local homomorphisms, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 145-150. https://doi.org/10.1090/S0273-0979-1990-15921-X
- L. L. Avramov and H.-B. Foxby, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3) 75 (1997), no. 2, 241-270. https://doi.org/10.1112/S0024611597000348
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
- L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883. https://doi.org/10.1090/S0002-9947-01-02627-7
- L. W. Christensen and H. Holm, Ascent properties of Auslander categories, Canad. J. Math. 61 (2009), no. 1, 76-108. https://doi.org/10.4153/CJM-2009-004-x
- L. W. Christensen and S. Sather-Wagstaff, Transfer of Gorenstein dimensions along ring homomorphisms, J. Pure Appl. Algebra 214 (2010), no. 6, 982-989. https://doi.org/10.1016/j.jpaa.2009.09.007
- Z. Di and X. Yang, Transfer properties of Gorenstein homological dimension with respect to a semidualizing module, J. Korean Math. Soc. 49 (2012), no. 6, 1197-1214. https://doi.org/10.4134/JKMS.2012.49.6.1197
- H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
- H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
- Z. Liu and W. Ren, Transfer of Gorenstein dimensions of unbounded complexes along ring homomorphisms, Comm. Algebra 42 (2014), no. 8, 3325-3338. https://doi.org/10.1080/00927872.2013.783039
- M. Salimi, On relative Gorenstein homological dimensions with respect to a dualizing module, Mat. Vesnik 69 (2017), no. 2, 118-125.
- S. Sather-Wagstaff, Semidualizing modules, URL: http://www.ndsu.edu/pubweb/-ssatherw/Accessed August 25, 2013.
- R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand. 106 (2010), no. 1, 5-22. https://doi.org/10.7146/math.scand.a-15121
- E. Tavasoli, M. Salimi, and S. Yassemi, Reflexive modules with finite Gorenstein dimension with respect to a semidualizing module, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 1, 21-28. https://doi.org/10.1007/s12044-015-0218-7
- D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111-137. https://doi.org/10.1216/JCA-2010-2-1-111
- D. Wu, Gorenstein dimensions over ring homomorphisms, Comm. Algebra 43 (2015), no. 5, 2005-2028. https://doi.org/10.1080/00927872.2014.881836
- C. Zhang, L. Wang, and Z. Liu, Gorenstein homological dimensions of complexes with respect to a semidualizing module, Comm. Algebra 42 (2014), no. 6, 2684-2703. https://doi.org/10.1080/00927872.2013.772185
- C. Zhang, L. Wang, and Z. Liu, Gorenstein homological dimensions and Auslander categories with respect to a semidualizing module, J. Math. Res. Appl. 33 (2013), no. 3, 297-311.