DOI QR코드

DOI QR Code

GORENSTEIN PROJECTIVE DIMENSIONS OF COMPLEXES UNDER BASE CHANGE WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia (School of Mathematical Sciences Chongqing Normal University)
  • Received : 2020.04.21
  • Accepted : 2020.09.23
  • Published : 2021.03.31

Abstract

Let R → S be a ring homomorphism. The relations of Gorenstein projective dimension with respect to a semidualizing module of homologically bounded complexes between U ⊗LR X and X are considered, where X is an R-complex and U is an S-complex. Some sufficient conditions are given under which the equality ${\mathcal{GP}}_{\tilde{C}}-pd_S(S{\otimes}{L \atop R}X)={\mathcal{GP}}_C-pd_R(X)$ holds. As an application it is shown that the Auslander-Buchsbaum formula holds for GC-projective dimension.

Keywords

References

  1. L. L. Avramov and H.-B. Foxby, Gorenstein local homomorphisms, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 1, 145-150. https://doi.org/10.1090/S0273-0979-1990-15921-X
  2. L. L. Avramov and H.-B. Foxby, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3) 75 (1997), no. 2, 241-270. https://doi.org/10.1112/S0024611597000348
  3. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
  4. L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883. https://doi.org/10.1090/S0002-9947-01-02627-7
  5. L. W. Christensen and H. Holm, Ascent properties of Auslander categories, Canad. J. Math. 61 (2009), no. 1, 76-108. https://doi.org/10.4153/CJM-2009-004-x
  6. L. W. Christensen and S. Sather-Wagstaff, Transfer of Gorenstein dimensions along ring homomorphisms, J. Pure Appl. Algebra 214 (2010), no. 6, 982-989. https://doi.org/10.1016/j.jpaa.2009.09.007
  7. Z. Di and X. Yang, Transfer properties of Gorenstein homological dimension with respect to a semidualizing module, J. Korean Math. Soc. 49 (2012), no. 6, 1197-1214. https://doi.org/10.4134/JKMS.2012.49.6.1197
  8. H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010
  9. H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289
  10. Z. Liu and W. Ren, Transfer of Gorenstein dimensions of unbounded complexes along ring homomorphisms, Comm. Algebra 42 (2014), no. 8, 3325-3338. https://doi.org/10.1080/00927872.2013.783039
  11. M. Salimi, On relative Gorenstein homological dimensions with respect to a dualizing module, Mat. Vesnik 69 (2017), no. 2, 118-125.
  12. S. Sather-Wagstaff, Semidualizing modules, URL: http://www.ndsu.edu/pubweb/-ssatherw/Accessed August 25, 2013.
  13. R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand. 106 (2010), no. 1, 5-22. https://doi.org/10.7146/math.scand.a-15121
  14. E. Tavasoli, M. Salimi, and S. Yassemi, Reflexive modules with finite Gorenstein dimension with respect to a semidualizing module, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 1, 21-28. https://doi.org/10.1007/s12044-015-0218-7
  15. D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111-137. https://doi.org/10.1216/JCA-2010-2-1-111
  16. D. Wu, Gorenstein dimensions over ring homomorphisms, Comm. Algebra 43 (2015), no. 5, 2005-2028. https://doi.org/10.1080/00927872.2014.881836
  17. C. Zhang, L. Wang, and Z. Liu, Gorenstein homological dimensions of complexes with respect to a semidualizing module, Comm. Algebra 42 (2014), no. 6, 2684-2703. https://doi.org/10.1080/00927872.2013.772185
  18. C. Zhang, L. Wang, and Z. Liu, Gorenstein homological dimensions and Auslander categories with respect to a semidualizing module, J. Math. Res. Appl. 33 (2013), no. 3, 297-311.