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REMARKS ON THE INFINITY WAVE EQUATION

Hyungjin Huh

Abstract. We propose the infinity wave equation which can be derived

from the exponential wave equation through the limit p → ∞. The solu-

tion of infinity Laplacian equation can be considered as a static solution
of the infinity wave equation. We present basic observations and find

some special solutions.

1. Introduction

We are interested in the following equation

∂αu ∂βu ∂
α∂βu = 0,(1.1)

where u : Rn+1 → R is a scalar function and Rn+1 is Minkowski spacetime
with signature (1, . . . , 1, −1). We use the notation ∂j = ∂j = ∂

∂xj
, −∂0 = ∂0 =

∂
∂t . The summation convention is used to sum over repeated indices. Greek
indices are used to denote 0, 1, . . . , n, while Latin indices for j = 1, 2, . . . , n.
In particular, (1.1) reads as in R1+1

u2xuxx − 2uxutuxt + u2tutt = 0.(1.2)

The equation (1.1) is obtained by the formal limit p→∞ of the exponential
wave equation [14]

1

p
∂α∂

αu+ ∂αu ∂βu ∂
α∂βu = 0,(1.3)

where p is a positive constant. We can check that the equation (1.3) is equiv-
alent to
n∑
i=1

∂

∂xi

(
∂iu exp

(p
2
|∇u|2 − p

2
(∂tu)2

))
− ∂

∂t

(
∂tu exp

(p
2
|∇u|2 − p

2
(∂tu)2

))
= 0,
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which is the Euler-Lagrange equation of∫
Rn+1

1

p

(
e

p
2 |∇u|

2− p
2 (∂tu)

2

− 1
)
dxdt.

For the static solution of (1.3), we have an equation

1

p
∆u+ ∂iu ∂ju ∂i∂ju = 0.(1.4)

A function u : Rn → R is called an exponentially harmonic function if it
satisfies (1.4). An exponentially harmonic map was introduced by J. Eells and
L. Lemaire [9], which generalizes usual harmonic map. It was proved in [13]
that any bounded exponentially harmonic function must be constant.

The authors in [15] investigated some exact solutions of exponential wave
maps and described the applications of exponential wave maps in Kaluza-Klein
gravity [19] by coupling gravitational fields with exponential scalar fields.

For a formal limit p→∞ in (1.4), we can obtain infinity Laplacian equation

∆∞u := ∂iu ∂ju ∂i∂ju = 0.(1.5)

In fact, the solution of equation (1.5) was studied in [12] through the solution
of (1.4). The equation (1.5) was proposed in [2–4]. Many authors have studied
(1.5) from the viewpoint of elliptic PDE, in particular, boundary value problem
through viscosity solution [5, 10, 12]. The regularity problem has been studied
in [11,16,18]. A game theory point of view was provided in [20] for understand-
ing the infinity Laplacian equation. Insights from game theory might help us
understand this interesting equation. We refer to [1,5,10] for more information.

The equation (1.3) can be written as in R1+1

1

p
(uxx − utt) + u2xuxx − 2uxutuxt + u2tutt = 0.(1.6)

The global existence of solution to (1.6) was proved in [14] for small initial
data. We summarize the situation in the following table.

Equation (1.4) Equation (1.3)
p <∞ Exponentially harmonic equation Exponential wave equation

[6, 13,15] [7, 14,22]
p =∞ infinity Laplacian equation

[1–5,10,12,20]

Here we want to fill out the above blank. That is to say, we take a formal limit
p → ∞ of the equation (1.3) to obtain (1.1) which will be called as infinity
wave equation. The infinity Laplacian equation in R2 reads as

u2xuxx + 2uxuyuxy + u2yuyy = 0.(1.7)

Aronsson [3] considered (1.7) as a parabolic equation, in the sense of the defi-
nition in [8], because of (uxuy)2−u2xu2y = 0. Many authors deal with boundary

value problem of (1.7). The equation (1.2) also satisfies (uxut)
2−u2xu2t = 0 but

takes several characters of hyperbolic equation like the existence of traveling
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wave and going well with hyperbolic coordinate. It seems quite difficult prob-
lem to consider the general solution of (1.2) which is a quasilinear degenerate
equation. Here we are interested in the solution of special ansanz.

In Section 2 we present basic observations for (1.1). Some special solutions
to (1.2) are discussed in Section 3.

2. Basic observations

Here we present some observations on the equation (1.1).

(1) The equation (1.1) can be rewritten as

1

2
∂α(∂βu∂

βu)∂αu = 0.

Therefore any solution to the following eikonal equation becomes a solution of
(1.1):

u2t − |∇u|2 = c,(2.1)

where c is a constant.
The remarkable result in [3] is that linear functions are the only C2 solutions

to (1.5) in R2. However it is easy to check that this is not the case for equation
(1.2). In fact, the function u(x, t) = f(x±t), where any C2 function f , satisfies
the eikonal equation (2.1) with c = 0.

We consider the problem

u2x − u2y + n2 = 0,

u(x, 0) = f(x),
(2.2)

where n is a constant and the variable y is used instead of t to apply character-
istic method [21] where t usually denotes a parameter. Considering that (2.2)
can be expressed as

(ux, −uy, −n2) · (ux, uy, −1) = 0,

we set

dx

dt
= ux,

dy

dt
= −uy,

du

dt
= −n2.(2.3)

Then we have

d2x

dt2
= uxx

dx

dt
+ uxy

dy

dt
=

1

2
∂x(−n2) = 0,

d2y

dt2
= −

(
uyx

dx

dt
+ uyy

dy

dt

)
=

1

2
∂y(n2) = 0,

du

dt
= ux

dx

dt
+ uy

dy

dt
= −n2.

(2.4)

Write the initial condition parametrically in the form (x, y, u) = (s, 0, h(s)).
The condition implies dx

dt (0, s) = ux = f ′(s). Substituting the expression into
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the (2.2) leads us to dy
dt (0, s) = −uy =

√
(f ′(s))2 + n2. Then we have, taking

(2.3) and (2.4) into account,(
x(t, s), y(t, s), u(t, s)

)
=
(
f ′(s)t+ s, t

√
(f ′(s))2 + n2, f(s)− n2t

)
.

(2) Define u(x, t) = V (X, T ), where X = 1√
2
(x + t) and T = 1√

2
(x − t).

Then the equation (1.2) transforms to

V 2
T VXX + 2VXVTVXT + V 2

XVTT = 0.(2.5)

Recall that 1-Laplacian equation in R2 reads as

u2yuxx − 2uxuyuxy + u2xuyy = 0.(2.6)

Note that (2.5) has a different sign from (2.6). We also note that infinity
Laplacian equation

u2xuxx + 2uxuyuxy + u2yuyy = 0

is invariant under the transformation X = 1√
2
(x+ y) and Y = 1√

2
(x− y).

It is interesting question to ask if there is a solution of (1.2) which does not
satisfy eikonal equation (2.1). In next section we study some special solutions
of (1.2) among which we find non-eikonal solutions, for instance, (3.3) and
(3.9).

3. Special solutions

It seems rather difficult matter to find the general solution to (1.2). Here
we are interested in special solutions of (1.2).

3.1. Solutions in hyperbolic coordinate

Let us transform the equation (1.2) in the coordinate

x = ρ cosh s and t = ρ sinh s,

where ρ = ±
√
|x2 − t2| and s = 1

2 log |x+t||x−t| . Note that the infinity Laplacian

equation (1.5) in R2 is written as

v2xvxx + 2vxvyvxy + v2yvyy = 0.(3.1)

For the equation (3.1), G. Aronsson [4] considered the polar coordinate (r, θ)

and looked for the solution of the form v(x, y) = (x2 + y2)
k
2 g(θ).

For the simple representation, we will consider the region −x < t < x. We
are interested in solutions of the form

u(x, t) = ρkf(s) = (x2 − t2)
k
2 f

(
1

2
log

x+ t

x− t

)
,

where k is a constant and f is a function of s. Substituting in (1.2), we have
the following ODE for f(s)

(f ′)2f ′′ − (2k2 − k)f(f ′)2 + k3(k − 1)f3 = 0,(3.2)
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where f ′ = df
ds and f ′′ = d2f

ds2 .
• The case of k = 0: It is easy to check that f(s) = as + b for constants a, b.
Then we have

u(x, t) =
a

2
log

x+ t

x− t
+ b.(3.3)

• The case of k = 1: We have f ′′ − f = 0 or f ′ = 0 which implies that

u(x, t) =
√
x2 − t2

(
a

√
x+ t

x− t
+ b

√
x− t
x+ t

)
or c

√
x2 − t2,

where a, b, c are constants.
Assume that f(s) 6= 0 and f ′(s) 6= 0 in some interval α < s < β. Then (3.2)

can be rewritten as

f ′′

f ′
− (2k2 − k)

f

f ′
+ k3(k − 1)

(
f

f ′

)3

= 0.(3.4)

Let h = f/f ′. We can check

h′ = 1− hf
′′

f ′
and f(s) = c exp

(∫
1

h
ds

)
.

Then we have an equation for h from (3.4).

dh

ds
= k3(k − 1)h4 − (2k2 − k)h2 + 1

= (k2h2 − 1)
(
(k2 − k)h2 − 1

)
.

(3.5)

For k2 − k > 0, (3.5) can be rewritten as(
k

kh+ 1
− k

kh− 1
+

k − 1√
k2 − kh− 1

− k − 1√
k2 − kh+ 1

)
dh

ds
= 2

which can be integrated as

log

∣∣∣∣kh+ 1

kh− 1

∣∣∣∣+

√
k − 1

k
log

∣∣∣∣∣
√
k2 − kh− 1√
k2 − kh+ 1

∣∣∣∣∣ = 2s.

For k2 − k < 0, (3.5) can be integrated as

log

∣∣∣∣kh+ 1

kh− 1

∣∣∣∣+ 2
1− k√
k − k2

arctan(
√
k − k2h) = 2s.

3.2. Self-similar solutions

We study a solution of the form u(x, t) = tαh(xt ). Substituting the ansatz
in (1.2), we have

t3α−4
(

(1− y2)h′ + αyh
)2
h′′

+ t3α−4
(
yh′ − αh

)(
2(α− 1)(1− y2)(h′)2+3(α2 − α)yhh′−(α3 − α2)h2

)
= 0,

(3.6)
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where we denote y = x/t.
• The case of α = 0: We have

(h′)2
(
(1− y2)h′′ − 2yh′

)
= 0.

Then we obtain h′(y) = ± 1
y2−1 from which we derive

h(y) = ±1

2
log
|y − 1|
|y + 1|

.

Then we have

u(x, t) = ±1

2
log
|x− t|
|x+ t|

,

which is already known in (3.3). For infinity Laplacian equation (3.1), we have
h′(y) = ± 1

y2+1 from which we derive

v(x, y) = arctan
(y
x

)
.

• The case of α = 1: We have
(

(1 − y2)h′ + yh
)2
h′′ = 0. Then we derive

h(y) = c
√
|y2 − 1| which implies

u(x, t) = c
√
|x2 − t2|.

Assume h′(y) 6= 0 and let H = h/h′. Dividing the equation (3.6) by (h′)3

and considering h′′

h′ = 1−H′

H , we derive the first order ODE for H.

dH

dy
= 1 +

H(αH − y)
(
(α3 − α2)H2 − 3(α2 − α)yH − 2(α− 1)(1− y2)

)
(1− y2 + αyH)2

.

In particular, we have for α = −1

dH

dy
= 1 +

H(H + y)
(
2H2 + 6yH − 4(1− y2)

)
(1− y2 − yH)2

,

which can be rewritten as, with the notation F (y) = H(y) + y,

dF

dy
= 2 +

F (F − y)(2F 2 + 2yF − 4)

(yF − 1)2
.

The further analysis of the above ODEs will be considered later.

3.3. Separation of variables

We substitute u(x, t) = f(x) + g(t) in (1.2). Then we have(
df

dx

)2
d2f

dx2
+

(
dg

dt

)2
d2g

dt2
= 0,

which leads us to

u(x, t) = c
(
|x| 43 − |t| 43

)
,(3.7)
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where c is a constant. Note that the function (3.7) was presented as C1, 13 (R2)
singular solution of (3.1) in [3].

We substitute u(x, t) = f(x) + g(t) in (1.6) with p = 1 to obtain(
1 +

( df
dx

)2) d2f

dx2
−
(

1−
(dg
dt

)2 )d2g
dt2

= 0,

which implies(
1 +

( df
dx

)2) d2f

dx2
= c and

(
1−

(dg
dt

)2 )d2g
dt2

= c(3.8)

for some constant c. Following the idea in [17], we have from (3.8)

f ′(x)3 + 3f ′(x)− 3cx = 0 and g′(t)3 − 3g′(t) + 3ct = 0.

Let us consider the case of c = 1. By Cardanno’s formulae, we have

f ′(x) = 2−
1
3

(
(
√

9x2 + 4 + 3x)
1
3 − (

√
9x2 + 4− 3x)

1
3

)
,

g′(t) = 2−
1
3

(
(
√

9t2 − 4− 3t)
1
3 − (

√
9t2 − 4 + 3t)

1
3

)
.

(3.9)

3.4. Hodograph method

Let φ = ux and ψ = ut. Then we can rewrite (1.6) as

φt − ψx = 0,(1

p
− ψ2

)
ψt+φψ(φt + ψx)−

(1

p
+ φ2

)
φx = 0.

(3.10)

Applying hodograph transformation [8]

φx = Jtψ, φt = −Jxψ, ψx = −Jtφ, ψt = Jxφ,

where J = φxψt − φtψx, we have from (3.10)

xψ − tφ = 0,(1

p
− ψ2

)
xφ−φψ(xψ + tφ)−

(1

p
+ φ2

)
tψ = 0.

The first equation implies that a potential function U = U(φ, ψ) exists such
that the relations

x = Uφ and t = Uψ

hold, and the second equation then takes the form(1

p
− ψ2

)
Uφφ − 2φψUφψ −

(1

p
+ φ2

)
Uψψ = 0.(3.11)

Every solution U(φ, ψ) defined in a certain region of the (φ, ψ)-plane leads to
(x, t) as functions of φ and ψ. Then x and t can be introduced as new variables
provided that the Jacobian

J = UφφUψψ − U2
φψ = xφtψ − xψtφ
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does not vanish.
When p =∞, the equation (3.11) becomes

ψ2Uφφ + 2φψUφψ + φ2Uψψ = 0.(3.12)

The equation (3.12) is parabolic one in the sense of the definition in [8]. In
fact, we define

U(φ, ψ) = V (ξ, η),

where ξ = φ, η = φ2 − ψ2. Then the equation (3.12) transforms to

2ηVη − (ξ2 − η)Vξξ = 0.(3.13)

We consider a solution to (3.13) of the form V (ξ, η) = V ( ξ
2

η ). Then we have

an ODE

2z(z − 1)
d2V

dz2
+ (2z − 1)

dV

dz
= 0,

where z = ξ2/η. Integrating the above ODE, we have

V (z) =

{
arccos(1− 2z) for z(z − 1) < 0,

log |z − 1
2 +
√
z2 − z | for z(z − 1) > 0.
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