Bull. Korean Math. Soc. **58** (2021), No. 2, pp. 445–449 https://doi.org/10.4134/BKMS.b200352 pISSN: 1015-8634 / eISSN: 2234-3016

RELATIVE SELF-CLOSENESS NUMBERS

Toshihiro Yamaguchi

ABSTRACT. We define the relative self-closeness number $N\mathcal{E}(g)$ of a map $g: X \to Y$, which is a generalization of the self-closeness number $N\mathcal{E}(X)$ of a connected CW complex X defined by Choi and Lee [1]. Then we compare $N\mathcal{E}(p)$ with $N\mathcal{E}(X)$ for a fibration $X \to E \xrightarrow{p} Y$. Furthermore we obtain its rationalized result.

1. Introduction

Let $\mathcal{E}(X)$ be the group of the self-homotopy equivalence classes of a connected CW complex X. In 2015, H. W. Choi and K. Y. Lee [1] introduced the following concept:

Definition 1. For a connected CW complex X, the subset $\mathcal{A}^k_{\sharp}(X)$ of [X, X] is defined by

$$\mathcal{A}^k_{\sharp}(X) = \{ f \in [X, X] \mid f_{\sharp} : \pi_i(X) \xrightarrow{\cong} \pi_i(X) \text{ is an isomorphism for any } i \leq k \},$$

and the self-closeness number $N\mathcal{E}(X)$ of X by

$$N\mathcal{E}(X) = \min\{ k \mid \mathcal{A}^k_{\mathsf{t}}(X) = \mathcal{E}(X) \}.$$

In this paper, we define the relative version:

Definition 2. For a map $g : X \to Y$ between connected CW complexes, let $\mathcal{E}(g) := \{[f] \in \mathcal{E}(X) \mid g \circ f \simeq g\}$ (the group of relative self-homotopy equivalence classes) and

$$\mathcal{A}^k_{\sharp}(g) := \{ f \in [X, X] \mid f_{\sharp} : \pi_i(X) \xrightarrow{=} \pi_i(X) \text{ is an isomorphism for any } i \leq k \\ \text{and } g \circ f \simeq g \}.$$

Then the relative self-closeness number of a map g is defined as

$$N\mathcal{E}(g) := \min\{k \,|\, \mathcal{A}^k_{\mathsf{t}}(g) = \mathcal{E}(g)\}.$$

O2021Korean Mathematical Society

445

Received April 16, 2020; Accepted December 30, 2020.

²⁰¹⁰ Mathematics Subject Classification. 55P10, 55P62, 55Q05, 55R05.

 $Key\ words\ and\ phrases.$ Self-homotopy equivalence, fibration, relative self-closeness number, Sullivan model.

In [6], N. Oda and the author gived evaluations of self-closeness numbers in fibrations. We compare $N\mathcal{E}(p)$ with $N\mathcal{E}(X)$ for a fibration $X \to E \xrightarrow{p} Y$ in §2. Furthermore we obtain its rationalized result by using Sullivan model [7] in §3. In this paper, we often confuse a map and its homotopy class.

2. An upper bound in a fibration

Lemma 3. (1) It is a homotopy invariant, i.e., $N\mathcal{E}(g_1) = N\mathcal{E}(g_2)$ if $g_1 \simeq g_2$: $X \to Y$.

(2) For any map $g: X \to Y$, $N\mathcal{E}(g) \leq N\mathcal{E}(X)$. In particular, $N\mathcal{E}(id_X) = 0$ for $id_X: X \xrightarrow{=} X$ and $N\mathcal{E}(c) = N\mathcal{E}(X)$ for the constant map $c: X \to *$. (3) For maps $g_i: X \to Y_i$, $N\mathcal{E}(g_1) \leq N\mathcal{E}(g_2)$ if $h \circ g_1 \simeq g_2$ for a map $h: Y_1 \to Y_2$.

Proof. (1) It is obvious from [1, Theorem 1] and the definition.

(2) It is obvious since $\mathcal{A}^k_{\sharp}(g) \subset \mathcal{A}^k_{\sharp}(X)$.

(3) Let $N\mathcal{E}(g_2) = k$. Suppose $\pi_{\leq k}(f)$ is an isomorphism for a map $f: X \to X$. If $g_1 \circ f \simeq g_1$, then $g_2 \circ f \simeq g_2$. Then $f \in \mathcal{E}(X)$ from the assumption. Thus we have $N\mathcal{E}(g_1) \leq k$.

Example 4. (1) For the projection $g: S^m \times S^n \to S^n$, $N\mathcal{E}(g) = m$. (2) For the Hopf map $\eta: S^3 \to S^2$, $N\mathcal{E}(\eta) = 0$.

Theorem 5. Let $X \xrightarrow{j} E \xrightarrow{p} Y$ be a fibration. Then $N\mathcal{E}(X) + 1 \ge N\mathcal{E}(p)$.

Proof. Let $k := N\mathcal{E}(X)$. Suppose that $f \in [E, E]$ with $p \circ f \simeq p$ and $\pi_{\leq k+1}(f)$ isomorphic. Then there is the restriction map f' of f in the homotopy commutative diagram:

$$\begin{array}{ccc} X & \stackrel{j}{\longrightarrow} E & \stackrel{p}{\longrightarrow} Y \\ & & & & & \\ f' & & & & & \\ Y & \stackrel{j}{\longrightarrow} E & \stackrel{p}{\longrightarrow} Y \end{array}$$

in which $\pi_{\leq k}(f')$ is isomorphic from the five lemma about the commutative diagram between homotopy exact sequences:

$$\begin{aligned} \pi_{i+1}(E) &\xrightarrow{\pi_{i+1}(p)} \pi_{i+1}(Y) \xrightarrow{\partial} \pi_i(X) \xrightarrow{\pi_i(j)} \pi_i(E) \xrightarrow{\pi_i(p)} \pi_i(Y) \\ \pi_{i+1}(f) \middle| \cong & \downarrow = & \pi_i(f') \middle| & \pi_i(f) \middle| \cong & \downarrow = \\ \pi_{i+1}(E) \xrightarrow{\pi_{i+1}(p)} \pi_{i+1}(Y) \xrightarrow{\partial} \pi_i(X) \xrightarrow{\pi_i(j)} \pi_i(E) \xrightarrow{\pi_i(p)} \pi_i(Y) \end{aligned}$$

for $i \leq k$. From the definition of $k, f' \in \mathcal{E}(X)$. Then $f_{\sharp} : \pi_*(E) \to \pi_*(E)$ is isomorphic from the five lemma about the commutative diagram:

$$\pi_{i+1}(Y) \xrightarrow{\pi_{i+1}(p)} \pi_i(X) \xrightarrow{\pi_i(j)} \pi_i(E) \xrightarrow{\pi_i(p)} \pi_i(Y) \xrightarrow{\partial} \pi_{i-1}(X)$$

$$\downarrow = \pi_i(f') \downarrow \cong \pi_i(f) \downarrow \qquad \downarrow = \pi_{i-1}(f') \downarrow \cong$$

$$\pi_{i+1}(Y) \xrightarrow{\pi_{i+1}(p)} \pi_i(X) \xrightarrow{\pi_i(j)} \pi_i(E) \xrightarrow{\pi_i(p)} \pi_i(Y) \xrightarrow{\partial} \pi_{i-1}(X)$$

for all *i*. Thus we have $f \in \mathcal{E}(E)$ from Whitehead theorem. That means $k+1 \ge N\mathcal{E}(p)$.

3. The rationalized version

In this section, we assume that a space is a simply connected CW complex of finite type. Let X_0 be the rationalization of a space X [5]. Then $\pi_*(X_0) = \pi_*(X) \otimes \mathbb{Q}$ and $H_*(X_0; \mathbb{Z}) = H_*(X; \mathbb{Q})$. We assume familiarity with rational homotopy theory as in the text [2].

Let $M(X) = (\Lambda V, d)$ be the Sullivan minimal model of a space X [7]. It is a free commutative differential graded algebra over \mathbb{Q} (DGA) with a \mathbb{Q} -graded vector space $V = \bigoplus_{i>1} V^i$ where dim $V^i < \infty$ and a decomposable differential, namely $d(V^i) \subset (\Lambda^+ V \cdot \Lambda^+ V)^{i+1}$ and $d \circ d = 0$. Here $\Lambda^+ V$ is the ideal of ΛV generated by elements of positive degree. The degree of a homogeneous element x of a graded algebra is denoted by |x|. Then $xy = (-1)^{|x||y|}yx$ and d(xy) = $d(x)y + (-1)^{|x|}xd(y)$. Note that M(X) determines the rational homotopy type of X. In particular, $V^n \cong \operatorname{Hom}(\pi_n(X), \mathbb{Q})$ for all n and $H^*(\Lambda V, d) \cong H^*(X; \mathbb{Q})$ as graded \mathbb{Q} -algebras.

Now we recall "DGA-homotopy" in [3, Chapter X]: In general, two maps $f : M(Y) \to M(X)$ and $g : M(Y) \to M(X)$ are DGA-homotopic (denote as $f \simeq g$) if there is a DGA-map $H : M(Y) \to M(X) \otimes \Lambda(t, dt)$ such that $H \mid_{t=0, dt=0} = f$ and $H \mid_{t=1, dt=0} = g$. Here |t| = 0 and |dt| = 1 with d(t) = dt, d(dt) = 0. Then we have $[X_0, Y_0] \cong [M(Y), M(X)]$ as homotopy sets. Let AutM be the group of DGA-automorphisms of a DGA M. For a nilpotent space X and the model M(X), there is a group isomorphism $\mathcal{E}(X_0) \cong \mathcal{E}(M(X)) := \operatorname{Aut}M(X)/\sim$, which is the group of self-DGA-homotopy equivalence classes of M(X). Thus we have the rational self-closeness number of X as $N\mathcal{E}(X_0) = N\mathcal{E}(M(X))$.

A fibration $p: E \to Y$ with fibre X has a minimal model which is a DGAmap $M(p): M(Y) \to M(E)$. It is induced by a relative or Koszul-Sullivan (KS-)model

$$i : M(Y) = (\Lambda W, d_Y) \to (\Lambda W \otimes \Lambda V, D),$$

where $D|_W = d_Y$ and $(\Lambda V, \overline{D}) = (\Lambda V, d_X) = M(X)$ and there is a quasiisomorphism $\rho_E : M(E) = (\Lambda U, d_E) \xrightarrow{\sim} (\Lambda W \otimes \Lambda V, D)$ such that $\rho_E \circ M(p) \simeq i$. Let D_1 be the indecomposable part of D. **Theorem 6.** Let $\xi : X \xrightarrow{j} E \xrightarrow{p} Y$ be a fibration of simply connected complexes. Then $N\mathcal{E}(X_0) \ge N\mathcal{E}(p_0)$. In particular, $N\mathcal{E}(X_0) = N\mathcal{E}(p_0)$ if ξ is rationally fibre-trivial.

Proof. Let $k := N\mathcal{E}(X_0) = N\mathcal{E}(\Lambda V, d_X)$. Suppose that $f \in [E_0, E_0]$ with $p_0 \circ f = p_0$ and $\pi_{\leq k}(f)$ isomorphic. Let $F : (\Lambda W \otimes \Lambda V, D) \to (\Lambda W \otimes \Lambda V, D)$ be the corresponding DGA-map for f and let $\rho_E : (\Lambda U, d_E) \to (\Lambda W \otimes \Lambda V, D)$ a minimal model. Then

$$(\Lambda W, d_Y) \xrightarrow{i} (\Lambda W \otimes \Lambda V^{\leq k}, D) \xleftarrow{\rho_E} (\Lambda U^{\leq k}, d_E)$$
$$\downarrow = \qquad \qquad \downarrow_F \qquad \cong \bigvee_V M(f)$$
$$(\Lambda W, d_Y) \xrightarrow{i} (\Lambda W \otimes \Lambda V^{\leq k}, D) \xleftarrow{\rho_E} (\Lambda U^{\leq k}, d_E)$$

induces that $V^{\leq k} \xrightarrow{F} \Lambda W \otimes \Lambda V^{\leq k} \xrightarrow{\text{proj.}} V^{\leq k}$ is isomorphic. Indeed, for $V_2 := \ker(D_1|_V)$ and a decomposition $V = V_1 \oplus V_2$ with $D_1(V_1) \subset W$, we obtain $\rho_E : U \cong W_2 \oplus V_2$ with a decomposition $W = D_1(V_1) \oplus W_2$. Then $\operatorname{proj.o} F|_{V_1^{\leq k}} : V_1^{\leq k} \to V_1^{\leq k}$ is isomorphic from the above left commutative diagram and $\operatorname{proj.o} F|_{V_2^{\leq k}} : V_2^{\leq k} \to V_2^{\leq k}$ is isomorphic from the right homotopy commutative diagram.

Let $\overline{F}: (\Lambda V, d_X) \to (\Lambda V, d_X)$ be the induced map of F. From the assumption, \overline{F} is isomorphic since proj. $\circ \overline{F}: V^{\leq k} \to V^{\leq k}$ is isomorphic. Then the commutative diagram between the KS-models of ξ

$$(\Lambda W, d_Y) \xrightarrow{\iota} (\Lambda W \otimes \Lambda V, D) \longrightarrow (\Lambda V, d_X)$$
$$\downarrow = \qquad \qquad \downarrow F \qquad \cong \bigvee \overline{F}$$
$$(\Lambda W, d_Y) \xrightarrow{i} (\Lambda W \otimes \Lambda V, D) \longrightarrow (\Lambda V, d_X)$$

induces that E_2 -terms of the Serre spectral sequences are isomorphic, i.e., $id^*_{\Lambda W} \otimes \overline{F}^* : H^*(Y; \mathbb{Q}) \otimes H^*(X; \mathbb{Q}) \cong H^*(Y; \mathbb{Q}) \otimes H^*(X; \mathbb{Q})$, we have $f^*(=F^*) : H^*(E; \mathbb{Q}) \cong H^*(E; \mathbb{Q})$. Thus $f : E_0 \to E_0$ is a homotopy equivalence. That means $k \ge N\mathcal{E}(p_0)$.

Furthermore, if ξ is rationally fibre-trivial, i.e., $D = d_Y + d_X$, we have $F \equiv id_{\Lambda W} \otimes \overline{F} \mod \Lambda^+ W \otimes \Lambda V$, where $\Lambda^+ W$ is the positive degree elements' subspace of ΛW . Then $F \in \mathcal{E}(\Lambda W \otimes \Lambda V, D)$ if and only if $\overline{F} \in \mathcal{E}(\Lambda V, d_X)$. Thus $N\mathcal{E}(p_0) = N\mathcal{E}(X_0) = k$.

Example 7. Let $X = S^3 \times S^5 \times S^9$. Of course $N\mathcal{E}(X_0) = 9$. Let $M(X) = (\Lambda(v_1, v_2, v_3), 0)$ with $|v_1| = 3$, $|v_2| = 5$, $|v_3| = 9$. Note that $[X_0, X_0] = [(\Lambda(v_1, v_2, v_3), 0), (\Lambda(v_1, v_2, v_3), 0)] \cong \mathbb{Q}^{\times 3}$ and $\mathcal{E}(X_0) \cong (\mathbb{Q}^*)^{\times 3}$ with $\mathbb{Q}^* = \mathbb{Q} - 0$ by $f(v_i) = a_i v_i$ ($a_i \in \mathbb{Q}$) for i = 1, 2, 3. In the following, we see that there are 3-types' rationally free circle actions on X from [4]. When a KS-model

$$(\mathbb{Q}[t],0) \to (\mathbb{Q}[t] \otimes \Lambda(v_1,v_2,v_3),D) \to (\Lambda(v_1,v_2,v_3),0)$$

448

with |t| = 2 induces dim $H^*(\mathbb{Q}[t] \otimes \Lambda(v_1, v_2, v_3), D) < \infty$, there is a rationally free S^1 -action on X where the rational Borel fibration is given by the model [4]. Note that the DGA-map $f : (\Lambda(t, v_1, v_2, v_3), D) \to (\Lambda(t, v_1, v_2, v_3), D)$ preserving t (f(t) = t) is given by

$$f(v_1) = a_1v_1, \ f(v_2) = a_2v_2 + b_1v_1t, \ f(v_3) = a_3v_3 + b_2v_2t^2 + b_3v_1t^3$$

with $a_i, b_i \in \mathbb{Q}$. Then from $D \circ f = f \circ D$ we obtain

(1) When $Dv_1 = Dv_2 = 0$ and $Dv_3 = v_1v_2t + t^5$, then $N\mathcal{E}(p_0) = 0$.

- (2) When $Dv_1 = Dv_2 = 0$ and $Dv_3 = t^5$, then $N\mathcal{E}(p_0) = 5$.
- (3) When $Dv_1 = t^2$ and $Dv_2 = Dv_3 = 0$, then $N\mathcal{E}(p_0) = 9$.

(4) When $Dv_1 = 0$, $Dv_2 = t^3$ and $Dv_3 = 0$, then $N\mathcal{E}(p_0) = 9$.

Acknowledgement. The author is grateful to Nobuyuki Oda for his encouragement and valuable suggestions.

References

- H. W. Choi and K. Y. Lee, Certain numbers on the groups of self-homotopy equivalences, Topology Appl. 181 (2015), 104–111. https://doi.org/10.1016/j.topol.2014.12.004
- [2] Y. Félix, S. Halperin, and J.-C. Thomas, *Rational Homotopy Theory*, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9
- [3] P. A. Griffiths and J. W. Morgan, *Rational homotopy theory and differential forms*, Progress in Mathematics, 16, Birkhäuser, Boston, MA, 1981.
- [4] S. Halperin, Rational homotopy and torus actions, in Aspects of topology, 293–306, London Math. Soc. Lecture Note Ser., 93, Cambridge Univ. Press, Cambridge, 1985.
- [5] P. Hilton, G. Mislin, and J. Roitberg, *Localization of nilpotent groups and spaces*, North-Holland Publishing Co., Amsterdam, 1975.
- [6] N. Oda and T. Yamaguchi, Self-maps of spaces in fibrations, Homology Homotopy Appl. 20 (2018), no. 2, 289–313. https://doi.org/10.4310/hha.2018.v20.n2.a15
- [7] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. No. 47 (1977), 269–331 (1978).

Toshihiro Yamaguchi Faculty of Education Kochi University 2-5-1 Akebono-cho, Kochi 780-8520, Japan Email address: tyamag@kochi-u.ac.jp