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RELATIVE SELF-CLOSENESS NUMBERS

TOSHIHIRO YAMAGUCHI

ABSTRACT. We define the relative self-closeness number NE(g) of a map
g: X — Y, which is a generalization of the self-closeness number NE(X)
of a connected CW complex X defined by Choi and Lee [1]. Then we

compare NE(p) with NE(X) for a fibration X — E 5 Y. Furthermore
we obtain its rationalized result.

1. Introduction

Let £(X) be the group of the self-homotopy equivalence classes of a con-
nected CW complex X. In 2015, H. W. Choi and K. Y. Lee [1] introduced the
following concept:

Definition 1. For a connected CW complex X, the subset Aff(X) of [X, X]
is defined by

A;f(X) ={felX, X]| fi:m((X) = m;(X) is an isomorphism for any i < k},
and the self-closeness number NE(X) of X by
NE(X) =min{k | Af(X) = E(X)}.
In this paper, we define the relative version:

Definition 2. For a map g : X — Y between connected CW complexes,

let £(g) = {[f] € E(X) | go f =~ g} (the group of relative self-homotopy

equivalence classes) and

Ag(g) ={fe X, X]| fy: m(X) = 7(X) is an isomorphism for any i < k
and go f~g}.

Then the relative self-closeness number of a map g is defined as

NE(g) := min{k | Af(9) = £(9)}-
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In [6], N. Oda and the author gived evaluations of self-closeness numbers in
fibrations. We compare N&(p) with NE(X) for a fibration X — E 2 Y in §2.
Furthermore we obtain its rationalized result by using Sullivan model [7] in §3.
In this paper, we often confuse a map and its homotopy class.

2. An upper bound in a fibration

Lemma 3. (1) It is a homotopy invariant, i.e., NE(g1) = NE(g2) if g1 ~ g2 :
X =Y.

(2) For any map g: X =Y, NE(g) < NE(X). In particular, NE(idx) =0
foridx : X = X and NE(c) = NE(X) for the constant map ¢ : X — *.

(3) For maps g; : X — Y;, NE(g1) < NE(g2) if ho g1 ~ g2 for a map
h: Y1 — YQ.

Proof. (1) It is obvious from [1, Theorem 1] and the definition.

(2) Tt is obvious since Af;(g) C A{f (X).

(3) Let NE(g2) = k. Suppose <k (f) is an isomorphism for a map f: X —
X. Ifgyof ~ gy, then goo f ~ go. Then f € £(X) from the assumption. Thus
we have NE(g1) < k. O

Example 4. (1) For the projection g : S™ x 8™ — S™ N&(g) = m.
(2) For the Hopf map n : S — S2, NE(n) = 0.

Theorem 5. Let X % E B Y be a fibration. Then NE(X)+1> NE(p).

Proof. Let k := NE(X). Suppose that f € [E, E] with po f ~ p and m<g41(f)
isomorphic. Then there is the restriction map f’ of f in the homotopy com-
mutative diagram:

X .g "oy
7 7 =
XxJlop-".oy

in which m<,(f’) is isomorphic from the five lemma about the commutative
diagram between homotopy exact sequences:

mi(5)

mit1(p) 3
(

i1 (E) — mi11 (V) —— mi(X)

Tf1:+1(f)lu

Ti1 (B) 2w (V) 2= mi(X)
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for i < k. From the definition of k, f’ € £(X). Then f; : m.(E) — m.(E) is
isomorphic from the five lemma about the commutative diagram:
mi(p)

i1 ( )

rer (V) 2 (00) T2y (B) 28y (v) —2 i (X)
J/_ mi(f) | = 7Ti(f)l l_ Wi—l(f/)l:
Tit+1(p) i () i (p) )
Tit1(Y) —= mi(X) i (E) mi(Y) mi—1(X)

for all ¢. Thus we have f € £(E) from Whitehead theorem. That means
kE+1> NE(p). O

3. The rationalized version

In this section, we assume that a space is a simply connected CW complex
of finite type. Let Xy be the rationalization of a space X [5]. Then m.(Xo) =
(X)) ® Q and H.(Xo;Z) = H.(X;Q). We assume familiarity with rational
homotopy theory as in the text [2].

Let M(X) = (AV,d) be the Sullivan minimal model of a space X [7]. Tt is
a free commutative differential graded algebra over Q (DGA) with a Q-graded
vector space V = @, V* where dim V"’ < oo and a decomposable differential,
namely d(V*) C (ATV - ATV)*! and dod = 0. Here ATV is the ideal of AV
generated by elements of positive degree. The degree of a homogeneous element
x of a graded algebra is denoted by |z|. Then zy = (—1)!*IIWlyz and d(zy) =
d(x)y + (=1)1*lzd(y). Note that M(X) determines the rational homotopy type
of X. In particular, V" = Hom(m,(X), Q) for all n and H*(AV,d) = H*(X;Q)
as graded Q-algebras.

Now we recall “DGA-homotopy” in [3, Chapter X]: In general, two maps f :
MY)—- M(X)and g: M(Y) - M(X) are DGA-homotopic (denote as f ~ g)
if there is a DGA-map H : M(Y) — M (X) ® A(t, dt) such that H |;=0 gi=0= f
and H |;=1,@¢t=0= g. Here [t| = 0 and |dt| = 1 with d(¢) = dt, d(dt) = 0. Then
we have [Xo, Yp] = [M(Y), M(X)] as homotopy sets. Let AutM be the group
of DGA-automorphisms of a DGA M. For a nilpotent space X and the model
M(X), there is a group isomorphism &(Xj) = E(M(X)) = AutM(X)/ ~,
which is the group of self-DGA-homotopy equivalence classes of M (X). Thus
we have the rational self-closeness number of X as NE(Xp) = NE(M(X)).

A fibration p : E — Y with fibre X has a minimal model which is a DGA-
map M(p) : M(Y) — M(E). It is induced by a relative or Koszul-Sullivan
(KS-)model

i M(Y)=(AW,dy) - (AW ® AV, D),
where D|y = dy and (AV,D) = (AV,dx) = M(X) and there is a quasi-

isomorphism pg : M(E) = (AU, dg) = (AW ®AV, D) such that pgo M(p) ~ i.
Let Dy be the indecomposable part of D.
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Theorem 6. Let & : X LERY be a fibration of simply connected complexes.
Then NE(Xg) > NE(po). In particular, NE(Xoy) = NE(po) if & is rationally
fibre-trivial.

Proof. Let k := NE(Xy) = NE(AV,dx). Suppose that f € [Ep, Ep] with
po © f = po and <y (f) isomorphic. Let F : (AW ® AV, D) — (AW @ AV, D)
be the corresponding DGA-map for f and let pg : (AU, dg) — (AW ® AV, D)
a minimal model. Then

(AW, dy) —= (AW @ AV=F, D) <22 (AUSF, dp)

C T

(AW, dy) —= (AW ®@ AV=EF, D) <22 (AUS* dy)
induces that V=<F 5 AW @ AVSE 1Y y<k g4 isomorphic. Indeed, for V5 :=
ker(D;|y) and a decomposition V = Vi @ Vo with D;(V7) € W, we obtain
pE : U = Wa@ Vs, with a decomposition W = Dy (V1) ®©W,. Then proj.o || <x :
1

Vlgk — Vlgk is isomorphic from the above left commutative diagram and proj.o
F |V2§k : ka — ka is isomorphic from the right homotopy commutative
diagram.

Let F : (AV,dx) — (AV,dx) be the induced map of F. From the assump-
tion, F is isomorphic since proj. o F : VSF — V=F ig isomorphic. Then the
commutative diagram between the KS-models of &

(AW, dy) —> (AW ® AV, D) —= (AV, dx)

T
(AW, dy) —— (AW @ AV, D) —— (AV.dx)

induces that Fs-terms of the Serre spectral sequences are isomorphic, i.e.,
idyyw ®F : H*(Y;Q) ® H*(X;Q) = H*(Y;Q) ® H*(X;Q), we have f*(=
F*): H*(E;Q) =2 H*(E;Q). Thus f: Ey — Ey is a homotopy equivalence.
That means k > NE(po).

Furthermore, if £ is rationally fibre-trivial, i.e., D = dy + dx, we have
F =idaw ® F mod ATW ® AV, where ATW is the positive degree elements’
subspace of AW. Then F € E(AW @ AV, D) if and only if F € E(AV,dx).
Thus NE(po) = NE(Xo) = k. O

Example 7. Let X = 5% x S5 x $9. Of course NE(Xp) = 9. Let M(X) =
(A(v1,v9,v3),0) with |v1] = 3, |va] = 5, |vg] = 9. Note that [Xo, Xo] =
[(A(v1,v2,v3),0), (A(v1,v2,v3),0)] = Q>3 and £(X,) = (Q*)*3 with Q* = Q—0
by f(vi) = a;v; (a; € Q) for i = 1,2, 3. In the following, we see that there are
3-types’ rationally free circle actions on X from [4]. When a KS-model

(Q[t],0) — (Q[t] ® A(v1,v2,v3), D) — (A(v1,v2,v3),0)
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with [¢t| = 2 induces dim H*(Q[t] ® A(v1,v2,v3), D) < 0o, there is a rationally
free S'-action on X where the rational Borel fibration is given by the model
[4]. Note that the DGA-map f : (A(¢,v1,v2,v3),D) — (A(t,v1,v2,v3), D)
preserving ¢t (f(t) =t) is given by

f(v1) = a1, f(ve) = agva + byvit, f(vs) = azvs + bovat® + byvyt?

with a;,b; € Q. Then from Do f = f o D we obtain
(1) When Dv; = Dvy = 0 and Dvg = vivat + t5, then NE(pg) = 0.
(2) When Dv; = Dvy = 0 and Dvs = t5, then NE(pg) = 5.
(3) When Dv; = t? and Dvy = Dvz = 0, then NE(pg) = 9.
(4) When Dvy = 0, Dvy = t2 and Dvs = 0, then NE(pg) = 9.
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