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RELATIVE SELF-CLOSENESS NUMBERS

Toshihiro Yamaguchi

Abstract. We define the relative self-closeness number NE(g) of a map

g : X → Y , which is a generalization of the self-closeness number NE(X)
of a connected CW complex X defined by Choi and Lee [1]. Then we

compare NE(p) with NE(X) for a fibration X → E
p→ Y . Furthermore

we obtain its rationalized result.

1. Introduction

Let E(X) be the group of the self-homotopy equivalence classes of a con-
nected CW complex X. In 2015, H. W. Choi and K. Y. Lee [1] introduced the
following concept:

Definition 1. For a connected CW complex X, the subset Ak] (X) of [X,X]
is defined by

Ak] (X) = { f ∈ [X,X] | f] : πi(X)
∼=−→ πi(X) is an isomorphism for any i ≤ k},

and the self-closeness number NE(X) of X by

NE(X) = min{ k | Ak] (X) = E(X)}.

In this paper, we define the relative version:

Definition 2. For a map g : X → Y between connected CW complexes,
let E(g) := {[f ] ∈ E(X) | g ◦ f ' g} (the group of relative self-homotopy
equivalence classes) and

Ak] (g) := {f ∈ [X,X] | f] : πi(X)
∼=−→ πi(X) is an isomorphism for any i ≤ k

and g ◦ f ' g}.

Then the relative self-closeness number of a map g is defined as

NE(g) := min{k | Ak] (g) = E(g)}.
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In [6], N. Oda and the author gived evaluations of self-closeness numbers in

fibrations. We compare NE(p) with NE(X) for a fibration X → E
p→ Y in §2.

Furthermore we obtain its rationalized result by using Sullivan model [7] in §3.
In this paper, we often confuse a map and its homotopy class.

2. An upper bound in a fibration

Lemma 3. (1) It is a homotopy invariant, i.e., NE(g1) = NE(g2) if g1 ' g2 :
X → Y .

(2) For any map g : X → Y , NE(g) ≤ NE(X). In particular, NE(idX) = 0

for idX : X
=→ X and NE(c) = NE(X) for the constant map c : X → ∗.

(3) For maps gi : X → Yi, NE(g1) ≤ NE(g2) if h ◦ g1 ' g2 for a map
h : Y1 → Y2.

Proof. (1) It is obvious from [1, Theorem 1] and the definition.
(2) It is obvious since Ak] (g) ⊂ Ak] (X).

(3) Let NE(g2) = k. Suppose π≤k(f) is an isomorphism for a map f : X →
X. If g1 ◦ f ' g1, then g2 ◦ f ' g2. Then f ∈ E(X) from the assumption. Thus
we have NE(g1) ≤ k. �

Example 4. (1) For the projection g : Sm × Sn → Sn, NE(g) = m.
(2) For the Hopf map η : S3 → S2, NE(η) = 0.

Theorem 5. Let X
j→ E

p→ Y be a fibration. Then NE(X) + 1 ≥ NE(p).

Proof. Let k := NE(X). Suppose that f ∈ [E,E] with p ◦ f ' p and π≤k+1(f)
isomorphic. Then there is the restriction map f ′ of f in the homotopy com-
mutative diagram:

X

f ′

��

j // E

f

��

p // Y

=

��
X

j // E
p // Y

in which π≤k(f ′) is isomorphic from the five lemma about the commutative
diagram between homotopy exact sequences:

πi+1(E)

∼=πi+1(f)

��

πi+1(p)// πi+1(Y )

=

��

∂ // πi(X)

πi(f
′)

��

πi(j) // πi(E)

∼=πi(f)

��

πi(p) // πi(Y )

=

��
πi+1(E)

πi+1(p)// πi+1(Y )
∂ // πi(X)

πi(j) // πi(E)
πi(p) // πi(Y )
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for i ≤ k. From the definition of k, f ′ ∈ E(X). Then f] : π∗(E) → π∗(E) is
isomorphic from the five lemma about the commutative diagram:

πi+1(Y )

=

��

πi+1(p)// πi(X)

πi(f
′) ∼=
��

πi(j) // πi(E)

πi(f)

��

πi(p) // πi(Y )

=

��

∂ // πi−1(X)

πi−1(f ′) ∼=
��

πi+1(Y )
πi+1(p)// πi(X)

πi(j) // πi(E)
πi(p) // πi(Y )

∂ // πi−1(X)

for all i. Thus we have f ∈ E(E) from Whitehead theorem. That means
k + 1 ≥ NE(p). �

3. The rationalized version

In this section, we assume that a space is a simply connected CW complex
of finite type. Let X0 be the rationalization of a space X [5]. Then π∗(X0) =
π∗(X) ⊗ Q and H∗(X0;Z) = H∗(X;Q). We assume familiarity with rational
homotopy theory as in the text [2].

Let M(X) = (ΛV, d) be the Sullivan minimal model of a space X [7]. It is
a free commutative differential graded algebra over Q (DGA) with a Q-graded
vector space V =

⊕
i>1 V

i where dimV i <∞ and a decomposable differential,

namely d(V i) ⊂ (Λ+V · Λ+V )i+1 and d ◦ d = 0. Here Λ+V is the ideal of ΛV
generated by elements of positive degree. The degree of a homogeneous element
x of a graded algebra is denoted by |x|. Then xy = (−1)|x||y|yx and d(xy) =
d(x)y+ (−1)|x|xd(y). Note that M(X) determines the rational homotopy type
of X. In particular, V n ∼= Hom(πn(X),Q) for all n and H∗(ΛV, d) ∼= H∗(X;Q)
as graded Q-algebras.

Now we recall “DGA-homotopy” in [3, Chapter X]: In general, two maps f :
M(Y )→M(X) and g : M(Y )→M(X) are DGA-homotopic (denote as f ' g)
if there is a DGA-map H : M(Y )→M(X)⊗Λ(t, dt) such that H |t=0,dt=0= f
and H |t=1,dt=0= g. Here |t| = 0 and |dt| = 1 with d(t) = dt, d(dt) = 0. Then
we have [X0, Y0] ∼= [M(Y ),M(X)] as homotopy sets. Let AutM be the group
of DGA-automorphisms of a DGA M . For a nilpotent space X and the model
M(X), there is a group isomorphism E(X0) ∼= E(M(X)) := AutM(X)/∼,
which is the group of self-DGA-homotopy equivalence classes of M(X). Thus
we have the rational self-closeness number of X as NE(X0) = NE(M(X)).

A fibration p : E → Y with fibre X has a minimal model which is a DGA-
map M(p) : M(Y ) → M(E). It is induced by a relative or Koszul-Sullivan
(KS-)model

i : M(Y ) = (ΛW,dY )→ (ΛW ⊗ ΛV,D),

where D|W = dY and (ΛV,D) = (ΛV, dX) = M(X) and there is a quasi-

isomorphism ρE : M(E) = (ΛU, dE)
∼→ (ΛW ⊗ΛV,D) such that ρE ◦M(p) ' i.

Let D1 be the indecomposable part of D.
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Theorem 6. Let ξ : X
j→ E

p→ Y be a fibration of simply connected complexes.
Then NE(X0) ≥ NE(p0). In particular, NE(X0) = NE(p0) if ξ is rationally
fibre-trivial.

Proof. Let k := NE(X0) = NE(ΛV, dX). Suppose that f ∈ [E0, E0] with
p0 ◦ f = p0 and π≤k(f) isomorphic. Let F : (ΛW ⊗ ΛV,D) → (ΛW ⊗ ΛV,D)
be the corresponding DGA-map for f and let ρE : (ΛU, dE)→ (ΛW ⊗ ΛV,D)
a minimal model. Then

(ΛW,dY )

=

��

i // (ΛW ⊗ ΛV ≤k, D)

F

��

(ΛU≤k, dE)oo

M(f)∼=
��

ρEoo

(ΛW,dY )
i // (ΛW ⊗ ΛV ≤k, D) (ΛU≤k, dE)oo ρEoo

induces that V ≤k
F→ ΛW ⊗ ΛV ≤k

proj.→ V ≤k is isomorphic. Indeed, for V2 :=
ker(D1|V ) and a decomposition V = V1 ⊕ V2 with D1(V1) ⊂ W , we obtain
ρE : U ∼= W2⊕V2 with a decomposition W = D1(V1)⊕W2. Then proj.◦F |

V
≤k
1

:

V ≤k1 → V ≤k1 is isomorphic from the above left commutative diagram and proj.◦
F |

V
≤k
2

: V ≤k2 → V ≤k2 is isomorphic from the right homotopy commutative

diagram.
Let F : (ΛV, dX) → (ΛV, dX) be the induced map of F . From the assump-

tion, F is isomorphic since proj. ◦ F : V ≤k → V ≤k is isomorphic. Then the
commutative diagram between the KS-models of ξ

(ΛW,dY )

=

��

i // (ΛW ⊗ ΛV,D)

F

��

// (ΛV, dX)

F∼=
��

(ΛW,dY )
i // (ΛW ⊗ ΛV,D) // (ΛV, dX)

induces that E2-terms of the Serre spectral sequences are isomorphic, i.e.,

id∗ΛW ⊗ F
∗

: H∗(Y ;Q) ⊗ H∗(X;Q) ∼= H∗(Y ;Q) ⊗ H∗(X;Q), we have f∗(=
F ∗) : H∗(E;Q) ∼= H∗(E;Q). Thus f : E0 → E0 is a homotopy equivalence.
That means k ≥ NE(p0).

Furthermore, if ξ is rationally fibre-trivial, i.e., D = dY + dX , we have
F ≡ idΛW ⊗ F mod Λ+W ⊗ ΛV, where Λ+W is the positive degree elements’
subspace of ΛW . Then F ∈ E(ΛW ⊗ ΛV,D) if and only if F ∈ E(ΛV, dX).
Thus NE(p0) = NE(X0) = k. �

Example 7. Let X = S3 × S5 × S9. Of course NE(X0) = 9. Let M(X) =
(Λ(v1, v2, v3), 0) with |v1| = 3, |v2| = 5, |v3| = 9. Note that [X0, X0] =
[(Λ(v1, v2, v3), 0), (Λ(v1, v2, v3), 0)] ∼= Q×3 and E(X0) ∼= (Q∗)×3 with Q∗ = Q−0
by f(vi) = aivi (ai ∈ Q) for i = 1, 2, 3. In the following, we see that there are
3-types’ rationally free circle actions on X from [4]. When a KS-model

(Q[t], 0)→ (Q[t]⊗ Λ(v1, v2, v3), D)→ (Λ(v1, v2, v3), 0)
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with |t| = 2 induces dimH∗(Q[t] ⊗ Λ(v1, v2, v3), D) < ∞, there is a rationally
free S1-action on X where the rational Borel fibration is given by the model
[4]. Note that the DGA-map f : (Λ(t, v1, v2, v3), D) → (Λ(t, v1, v2, v3), D)
preserving t (f(t) = t) is given by

f(v1) = a1v1, f(v2) = a2v2 + b1v1t, f(v3) = a3v3 + b2v2t
2 + b3v1t

3

with ai, bi ∈ Q. Then from D ◦ f = f ◦D we obtain
(1) When Dv1 = Dv2 = 0 and Dv3 = v1v2t+ t5, then NE(p0) = 0.
(2) When Dv1 = Dv2 = 0 and Dv3 = t5, then NE(p0) = 5.
(3) When Dv1 = t2 and Dv2 = Dv3 = 0, then NE(p0) = 9.
(4) When Dv1 = 0, Dv2 = t3 and Dv3 = 0, then NE(p0) = 9.
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