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RANDOM CHORD IN A CIRCLE AND BERTRAND’S

PARADOX: NEW GENERATION METHOD, EXTREME

BEHAVIOUR AND LENGTH MOMENTS

Zoran Vidović

Abstract. In this paper a new generating procedure of a random chord is
presented. This problem has its roots in the Bertrand’s paradox. A study

of the limit behaviour of its maximum length and the rate of convergence

is conducted. In addition, moments of record values of random chord
length are obtained for this case, as well as other cases of solutions of

Bertrand’s paradox.

1. Introduction

Let {Xn} be a sequence of independent and identically distributed (iid) ran-
dom variables with random chord length cumulative distribution function (cdf)
presented as in [7]. The cdf F (x) for this sequence depends upon the proce-
dure of choosing a random chord on a circle. This problem has its beginning
in the Bertrand’s paradox. This paradox was developed as a simple question
that raised doubt on the principle of indifference for cases with infinitely many
possibilities at hand, see [17]. The question was: “What is the probability that
a chord selected “at random” in a circle is larger than a side of the inscribed
equilateral triangle?”

In [5], Bertrand himself obtained probabilities 1/3, 1/2 and 1/4 by different
random chord generation procedures: by choosing a chord with one end at
a vertex of the inscribed equilateral triangle in a circle; by choosing a chord
perpendicular to the diameter which is the right bisector of the equilateral tri-
angle; and selecting a point inside a circle and denoting it as a chord midpoint,
respectively. More details related to this problem could be found in many sub-
sequent papers, see e.g. [1, 4, 10–12,21–23]. According to [1], when the sample
space and probability measure are uniquely defined, this paradox becomes a
solvable problem. Bertrand’s second solution was considered by Poincaré as a
natural choice based on the fact that the right Haar measure is invariant under
rigid transformation group, see e.g. [13, p. 16].
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The limiting distribution of the maximum of the sequence {Xi}, for various
choices of the chord generation procedures, was studied in [24]. Comparing
to the non-randomness property of the solution found in [23], in this paper we
provided a new generating method of random chords that naturally excludes
this restriction. Also, we extended previous results on asymptotic behaviour
of the maximum and added new results concerning records of random chord
lengths.

Record values were introduced by Chandler [6] as a model of successful
extremes. If {T (n), n ≥ 1} is defined by T (1) = 1, T (n) = min{j | j > T (n −
1), Xj > XT (n−1)} for n ≥ 2, then {Rn, n ≥ 1} = {XT (n), n ≥ 1} is said to be
a sequence of record values. The sequence {T (n), n ≥ 1} is called the sequence
of record times. An analogous definition can be given for lower record values.
We refer to [2, 3, 18], and reference therein, for more information about record
values. The pdf of Rn, n ≥ 1, is given by

fRn
(x) =

1

Γ(n)
{− log(1− F (x))}n−1f(x), −∞ < x <∞.(1)

Resnick in [20] obtained three possible limit distributions for record values, and
a theorem that presents a direct connection between non-degenerate limit laws
for sample maxima and record values, known as the Duality theorem.

The rest of the paper is organized as follows. In Section 2, we propose
a new procedure for generating a random chord in a circle and examine the
limiting properties of its maximum length. In Section 3 we study the record
chord length distributions, for various generating procedures, in terms of the
asymptotic behaviour and their lth moments.

2. New solution

In [23], a new continuous family of planar probabilistic models for Bertrand’s
paradox is introduced. This family contains classical models for generating ran-
dom chords as its limits. The chord constructing model consists of fixing the
thrower at a distance h > 1 from a unit circle and constructing lines that in-
tersect the circle with the origin at the thrower. However, this model requires
to “manually” manipulate the distance h. This contradicts the randomness
selection property of h and by that this model of constructing chords is in-
complete with respect to Bertrand’s paradox. This paradox is complete if
the randomness selection property of chords is fully satisfied. With this idea
in mind, we now present a new solution where the choice of the chords is fully
random.

The solution is obtained as follows.

Step 1. Select at random an angle θ, θ ∼ U(0, π), formed by two tangents of
the circle, say t and s, and denote A as its vertex;

Step 2. Choose at random an angle φ, φ ∼ U(0, θ), that lies on one tangent,
say s, and A as its vertex;
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Figure 1. New random chord generation procedure.

Step 3. Select a semi-line which is directed by an angle φ, with A as its starting
point. A chord is formed by its intersection with the circle (Figure 1).

Let X be the distance from the center of the circle and the chord, let L be
the corresponding chord length and let h be the distance between the point A
and the center of the circle. There are two cases: φ ∈ (0, θ2 ) and φ ∈ ( θ2 , θ).

Because they are symmetric, we can consider only the case φ ∈ (0, θ2 ). It then

follows that X =
√

1− L2

4 , sin( θ2 − φ) = X
h and sin θ

2 = 1
h . Combining them

we get

φ =
θ

2
− arcsin

(√
1− L2

4
sin

θ

2

)
.(2)

Transforming (2), the cdf of L can be found as

F (l) = 2

∫ π

0

∫ l

0

x sin θ
2

4θ
√

1− x2

4

√
1− (1− x2

4 ) sin2 θ
2

dx dθ

=

∫ π

0

t− 2arccsc
(

2 csc(t/2)√
4−l2

)
tπ

dt.(3)

This integral can’t be obtained explicitly, so we can only provide numerical
solutions. For the Bertrand’s case l =

√
3 we have

(4) P
{
L >

√
3
}

= 1− FL(
√

3) = 0.4454,

With Monte Carlo simulations, with n =100, 500, 1000 and 10000 repli-
cations, we can confirm our theoretical results. The simulation results are
presented in Table 1.
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Table 1. Monte Carlo simulations for P{L >
√

3}.

n 100 500 1000 10000

Estimated prob. 0.4455 0.4457 0.4452 0.4455

2.1. Maximal chord length convergence

We can now find the limiting behaviour of the maximum of the chord length.

Theorem 2.1. Let {Xn} be iid with cdf (3) and let Mn = max1≤i≤nXi.

Then, the normalized maximum Mn−bn
an

converges in distribution to the Weibull

distribution with the shape parameter 1
2 , i.e., P{

Mn−bn
an

≤ x} → e−(−x)
1
2 I{x <

0}. The normalizing constants are an = π2

4C2n2 , where C =
∫ π

0
1

t csc t
2

dt, and

bn = 2 for n ≥ 1. The rate of convergence is O( 1
n ).

Proof. The limiting Weibull distribution and its shape parameter α = 1/2
follow from [15, Theorem 1.6.1]. Let an > 0 and bn be such that P{Mn−bn

an
≤

x} →
n→∞

e−(−x)1/2 for x < 0. This is equivalent to

(FL(anx+ bn))
n →
n→∞

e−(−x)1/2 ,(5)

which can be stated as

lnFL(anx+ bn) = − (−x)1/2

n
+ o

(
1

n

)
, n→∞,(6)

for x < 0. Denote {un} = {anx+ bn} and the sequence {fn(t)}n≥1 as

fn(t) =

1− 2
t arccsc

(
2 csc( t

2 )√
4−u2

n

)
π

, n ≥ 1.
(7)

It is evident that

(8) |fn(t)| ≤ 1 := g(t)

for all t ∈ (0, π) and n ≥ 1. Moreover,
∫ π

0
g(t) dt = π <∞. The sequence {fn}

converges pointwise as n → ∞ (un → 2 as n → ∞). Therefore, all conditions
for implementing the theorem of dominant convergence (TDC) are satisfied.
Implementing TDC and using the relations arccsc(x) = 1

x + o
(

1
x

)
as x → ∞

and ex = 1 + x+ o(x) as x→ 0 we get

− lnπ + ln

∫ π

0

(
1− 2

√
1−

(un
2

)2 1

t csc t
2

)
dt = − (−x)1/2

n
+ o

(
1

n

)



RANDOM CHORD IN A CIRCLE AND BERTRAND’S PARADOX 437

for n→∞ and x < 0. Denote C =
∫ π

0
1

t csc t
2

dt. Further, we have

ln

(
1− 2C

π

√
1−

(un
2

)2
)

= − (−x)1/2

n
+ o

(
1

n

)
,

i.e.,

2C

π

√
1−

(un
2

)2

= − (−x)1/2

n
+ o

(
1

n

)
(9)

for n → ∞ and x < 0. Hence, the asymptotic normalizing constants are

an = π2

4C2n2 and bn = 2 for n ≥ 1. The above procedure was motivated by
[15, Corollary 1.6.3].

Denote τn = n(1 − FL(un)) and τ = (−x)1/2. It follows that τ − τn ∼
π2

32C2n2 (−x)3/2 and, according to [15, Theorem 2.4.2], the convergence speed is

O( 1
n ). �

We conducted a comparative simulation study in [19] to illustrate the rate of
convergence of the limiting maxima for the chord length with cdf’s presented
in [24], listed below, together with cdf (3).

F (x) =


0, x < 0
2
π arcsin x

2 , 0 ≤ x < 2

1, x ≥ 2,

(10)

F (x) =


0, x < 0
x2

4 , 0 ≤ x < 2

1, x ≥ 2,

(11)

F (x) =


0, x < 0

1−
√

4−x2

2 , 0 ≤ x < 2

1, x ≥ 2,

(12)

F (x) =


0, x < 0
2
π

(
arcsin x

2 −
x
√

4−x2

4

)
, 0 ≤ x < 2

1, x ≥ 2,

(13)

F (x) =


0, x < 0
2
π arccos

√
4−x2

2 − x(6+x2)
√

4−x2

12π , 0 ≤ x < 2

1, x ≥ 2.

(14)

We have presented the rate of convergence of the limiting maxima for each
case with respect to Bertand’s probabilities associated with appropriate chord
length distributions (3) and (10)-(14). For clarity, these probabilities are sorted
in increasing order. We generated 10000 replications of appropriately normal-
ized maxima with n = 10, 25, 50 and 100 for each case. Kolmogorov-Smirnov
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(K-S) test statistic was used to compare the empirical cdfs with the theoretical
ones. The values of K-S test statistic are presented in Table 2. In general,
we noticed that the rate of convergence performance increases as Bertrand’s
probabilities increases. These results are intuitively reasonable and expected.

Table 2. Rate of convergence for normalized Mn with cdf’s
(3) and (10)-(14) with respect to Bertrand’s probability.

Bertrand prob. n K-S
10 0.01649

0.25 25 0.01024
50 0.00887
100 0.00842
10 0.03127

0.3333 25 0.0139
50 0.01045
100 0.00905
10 0.00384

0.4454 25 0.00131
50 0.00093
100 0.00054
10 0.02871

0.5 25 0.01403
50 0.01029
100 0.00896
10 0.00348

0.609 25 0.00146
50 0.00076
100 0.00055
10 0.00342

0.7468 25 0.00154
50 0.00064
100 0.00042

3. Record chord length

3.1. Convergence results

In this section, we study the asymptotic behaviour of the corresponding
records, together with the case of the cdf (3).

Proposition 3.1. (i) Upper record values following cdf’s (3) and (10)-
(14) converge to 2 with probability one as n→∞.

(ii) For upper record values following cdf’s (3) and (10)-(14) non degenerate
limit laws under linear or power normalization do not hold.



RANDOM CHORD IN A CIRCLE AND BERTRAND’S PARADOX 439

Proof. The first part follows directly from [20].
Using the duality theorem, in order to prove the second statement it is

sufficient to show that the associated cdf Fa(x) = 1−exp{−
√
− log(1− F (x))}

does not belong to the domain of attraction for maxima of Weibull distribution,
where F takes the form (3) or (10)-(14). To do so, we follow several steps.
First, it is evident that xF = sup{x : Fa(x) < 1} = 2 and that Fa(xF−) < 1.
Let {un = anx + bn : an > 0, bn ∈ R} be a sequence such that P{Ma

n ≤
un} → e−τ as n → ∞ for some τ > 0, where Ma

n = max{ξ1, ξ2, . . . , ξn}
and where {ξn} is an iid sequence with cdf Fa. According to [15, Theorem
1.5.1, Corollary 1.5.2], the last relation is equivalent to n(1 − Fa(un)) → τ as
n → ∞. It then follows that F (un) → 1 − exp{− ln2 τ

n}. From [24, Theorem
3] and Theorem 2.1, we know that F belongs to the domain of attraction for
maxima of Weibull distribution with normalizing constants an and bn such
that un → 2 as n → ∞. With this in mind, we find that P{Mn ≤ un} =
(1 − (1 − F (un))n → (1 − exp{− ln2 τ

n})
n → 1 as n → ∞. This contradicts

the fact that F belongs to the domain of attraction for maxima of Weibull
distribution. Hence, τ = 0. Finally, [15, Corollary 1.5.2] proves (ii) for the
linear normalization case. For the case of power normalization, associated

function is of the form Â1(x) = Fa(ex)I[ln x0,ln 2) for some x0 ∈ (0, 2) (see [9]).
Further, for this case we have that xF = sup{x : Fa(ex) < 1} = ln 2 and the
sequence {un} is such that un → ln 2 as n→∞. The rest of the proof follows
the same steps as above. �

3.2. Moments

In the following theorem we provide analytical expressions for the lth mo-
ments of records of random chords.

Theorem 3.2. Let φ1(j) =
∑∞
i=0

(− 1
2
i

)
(−1)i x

j

4i and φ2(j) =
∑∞
i=0

( 1
2
i

)
(−1)i x

j

4i .
For n ≥ 2 and l ≥ 1, the lth moment of record chord length with cdf’s (10)-(14)
and (3), respectively, are given by

µ
(1)
n,l =

1

πΓ(n)

∫ 2

0

{ ∞∑
m=0

2m+1xm+1

(m+ 1)πm+1

∞∑
k=0

ckx
2k

}n−1

φ1(2i+ l) dx,(15)

where c0 = bm+1
0 , cj = 1

jb0

∑j
k=1(k(m + 1) − j + k)bkcj−k for j ≥ 1 and

{bk, k ≥ 0} =
{(

2k
k

)
1

24k+1(2k+1)
, k ≥ 0

}
;

µ
(2)
n,l =

2l+1

Γ(n)

∞∑
m=0

cm
2m+ 2n+ l

,(16)

where c0 = 1, cm = 1
m

∑m
k=1(k(n− 1)−m+ k) cm−k

k+1 for m ≥ 1;

µ
(3)
n,l =

2l−n
√
π

Γ(n)

∞∑
m=0

cm
Γ( l2 +m+ u)

Γ( 1
2 + l

2 +m+ u)
,(17)



440 Z. VIDOVIĆ

where c0 = 1, cm = 1
m

∑m
k=1(k(n− 1)−m+ k) cm−k

k+1 for m ≥ 1;

µ
(4)
n,l =

1

2πΓ(n)

∫ 2

0

{ ∞∑
m=0

2m+1xm+1

πm+1(m+ 1)

∞∑
k=0

ckx
2k

}n−1

φ1(2(i+ 1) + l) dx,(18)

where {dk, k ≥ 0} =

{
(2k

k )
24k+1(2k+1)

+
(

1
2
k)(−1)k+1

22k+1 , k ≥ 0

}
and c0 = dm+1

0 , cj =

1
jd0

∑j
k=1(k(m+ 1)− j + k)dkcj−k for j ≥ 1;

µ
(5)
n,l =

1

6πΓ(n)

∫ 2

0

[
− log

(
1

π

∞∑
k=0

(
2k
k

)
22k−1(2k + 1)

φ2(2i)2k+1 +
(x2 + 6)φ2(2i+ 1)

6π

)]n−1

× φ1(2(i+ 2) + l) dx;(19)

µ
(6)
n,l =

1

πΓ(n)

∫ 2

0

[
− log

(
1−

∫ π

0

t− 2arccsc (csc(t/2)φ1(2i))

tπ
dt

)]n−1

×

∫ π

0

1

t

φ1(2i+ 1 + l)√
4(csc2 t

2 − 1) + x2
dt

 dx.(20)

Proof. Throughout the proof we use the following lemma which can be found
in [25, (0.316)].

Lemma. We have

(21)

( ∞∑
k=0

akx
k

)n
=

∞∑
k=0

ckx
k,

where

c0 = an0 , cm =
1

ma0

m∑
k=1

(kn−m+ k)akcm−k

for m ≥ 1 and n ∈ N.

First, consider the case (15).

µ
(1)
n,l =

1

Γ(n)

∫ 2

0

xl{− log(1− F (x))}n−1f(x) dx

=
1

πΓ(n)

∫ 2

0

xl
{
− log

(
1− 2

π
arcsin

x

2

)}n−1
dx√

1− x2

4

.(22)

Expanding arcsin x
2 in power series, we obtain

µ
(1)
n,l =

1

πΓ(n)

∫ 2

0

xl

{
− log

(
1− 2

π

∞∑
k=0

(
2k

k

)
x2k+1

24k+1(2k + 1)

)}n−1
dx√

1− x2

4
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=
1

πΓ(n)

∫ 2

0

xl

{
∞∑
m=0

2m+1xm+1

(m+ 1)πm+1

( ∞∑
k=0

(
2k

k

)
x2k

24k+1(2k + 1)

)m+1}n−1

× dx√
1− x2

4

.(23)

Denote {bk, k ≥ 0} =
{(

2k
k

)
1

24k+1(2k+1)
, k ≥ 0

}
. Using Lemma 1 we have( ∞∑

k=0

bk(x2)k

)m+1

=

∞∑
k=0

ck(x2)k,(24)

where c0 = bm+1
0 and cj = 1

jb0

∑j
k=1(k(m + 1) − j + k)bkcj−k for j ≥ 1.

Therefore

µ
(1)
n,l =

1

πΓ(n)

∫ 2

0

xl

{ ∞∑
m=0

2m+1xm+1

(m+ 1)πm+1

∞∑
k=0

ckx
2k

}n−1
dx√

1− x2

4

=
1

πΓ(n)

∫ 2

0

{ ∞∑
m=0

2m+1xm+1

(m+ 1)πm+1

∞∑
k=0

ckx
2k

}n−1 ∞∑
i=0

(
− 1

2

i

)
(−1)i

x2i+l

4i
dx.(25)

Other cases are omitted due to their similarity. �

Further, we have conducted here a comparative study among various pa-
rameters of a chord length distributions (3) and (10)-(14) based on records. As
above, we have provided Bertand’s probabilities associated with each cdf’s (3)
and (10)-(14) and presented them in increasing order. The parameters under
investigation are the mean, variance, skewness and kurtosis. We summarized
all comparisons in Table 3. Briefly, we may highlight that the variance is de-
creasing for all record values as n increases. It was also noted that as n increases
the kurtosis also increases for all cases indicating a high level of heavy tailed
phenomena. On the contrary, skewness is negative for all cases and decreases
as n increases. Therefore, we can conclude that all record values have tails on
the left side of their distributions.

It was observed that the variance is negatively correlated with respect to
Bertrand’s probabilities as intuitively expected. Generally, the same holds true
for skewness while for the case of the mean and kurtosis positive correlation is
realized. Also, these results are realistic and expected. Overall, these results
are in concordance with those obtained for limiting maxima.

4. Conclusion

In this paper we proposed a new “solution” to Bertrand’s paradox. The
randomization procedure of this solution takes place outside the circle (see [17])
and follows the recommendation from [8, p. 305]. We may find this solution to
be a randomized version of Jaynes’s experiment, see [11].
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Table 3. Moments of Rn with cdf’s (3) and (10)-(14) with
respect to Bertrand’s probability.

Bertrand prob. n Mean Variance Skewness Kurtosis
1 1.3282 0.22461 −0.55059 2.36322
2 1.71108 0.0839 −1.46609 5.03734

0.25 3 1.86238 0.03196 −2.34663 9.86038
4 1.93375 0.01113 −3.22618 17.36272
5 1.96718 0.00383 −4.2452 29.27783
1 1.27261 0.37444 −0.4847 1.92304
2 1.75222 0.12952 −1.99237 6.74093

0.3333 3 1.912 0.03535 −3.71715 20.0899
4 1.97143 0.00733 −6.32481 57.29845
5 1.98967 0.00191 −10.38128 169.0421
1 1.49742 0.2415 −0.97726 2.98127
2 1.84485 0.06043 −2.46571 9.82857

0.4454 3 1.9503 0.01247 −4.27357 27.77369
4 1.98385 0.00263 −7.19977 76.92249
5 1.99445 0.00058 −9.89047 138.2683
1 1.57146 0.19927 −1.15787 3.52091
2 1.8714 0.04254 −2.60536 11.20524

0.5 3 1.96075 0.00888 −5.00608 38.18515
4 1.98699 0.00162 −6.36067 58.35393
5 1.99586 0.00029 −9.60456 142.1021
1 1.69224 0.11895 −1.45026 4.69214
2 1.91669 0.02052 −2.94325 13.80732

0.609 3 1.97493 0.00362 −4.93059 36.62403
4 1.9919 0.00078 −8.81611 121.7533
5 1.99746 0.00012 −9.8181 137.3913
1 1.81384 0.05175 −1.88891 7.03427
2 1.951 0.00782 −3.50046 19.81464

0.7468 3 1.9857 0.00128 −5.51952 48.13205
4 1.99528 0.00031 −11.45692 234.9656
5 1.99847 0.00006 −15.37753 358.8772

We concluded that the maximum Mn = max1≤i≤nXi of an iid sequence
{Xn} with cdf (3) has limiting Weibull distribution, which is in concordance
with [14], and we derived the appropriate convergence results. Moreover, we
obtained the moments of records of random chord lengths that can be useful
for characterization purposes.

Further perspectives may concern new generating methods of random chords
with possible extreme behaviour results, as well as undergoing inferential pro-
cedures on the dependence structure of various statistics of chord length record
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values and the limiting rate of convergence for chord length maxima with
Bertand’s probabilities. It would be also interesting to see if moments (15)-
(20) will satisfy some recurrence relations. This might eventually simplify their
evaluations.

Acknowledgement. The author expresses his sincere gratitude to the re-
viewer for his valuable comments that significantly improved the presentation
and quality of the paper.
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