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OPTIMAL SURRENDER TIME FOR A VARIABLE ANNUITY

WITH A FIXED INSURANCE FEE

Junkee Jeon and Kyunghyun Park

Abstract. This paper studies the optimal surrender policies for a vari-

able annuity (VA) contract with a surrender option and a fixed insurance
fee for guaranteed minimum maturity benefits (GMMB). In our proposed

model, a policyholder pays the fixed insurance fee. Based on the integral
transform techniques, we derive the analytic integral equations for the op-

timal surrender boundary and the value function of the VA contract that

can be solved numerically by recursive integration method. We provide
numerical values for the value function, the optimal surrender boundary,

and the expected optimal surrender time.

1. Introduction

In this paper, we propose a new type of a variable annuity contract where
the policyholder can choose an option to surrender the contract any time be-
fore maturity. In contrast to the traditional annuity contracts that offer fixed
amount at a predetermined date, variable annuity (VA) contracts provide a
random payoff to the policyholder. The policyholder pays a single premium to
her account, and this can be invested in the risky assets or the market index
by the insurer. Depending on the financial market environments, the policy-
holder may receive a high annuity income, meanwhile he/she is also exposed to
the downside risk. To protect the policyholder from the risk, the VA contract
guarantees the minimum payoff at the maturity and the insurer usually charges
the insurance fee on the contract to collect the funding of the guarantees. VA
contracts usually permit that the policyholder can choose the option to surren-
der the contract. In the VA contract with the surrender option, it is important
to investigate when the policyholder surrenders the contract.
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There have been previous studies on VA contracts with many types of guar-
antees and options (e.g., [2,4,8,10]). In particular, [2] studied the VA contract
with the surrender option when the insurance company withdraws a propor-
tional rate of the policyholder’s account. In contrast to [2], we consider the VA
contract with a surrender option that the insurance company does not with-
draw any insurance fee from the underlying fund or the policyholder’s account.
Instead, the policyholder continuously pays the fixed insurance fee to the in-
surer until the contract is terminated. This contract is thought of as a VA
version of an installment option (see [3]). Thus, the main feature of our paper
is that regardless of the fund value, the policyholder pays a fixed insurance fee.

Since the policyholder has a right to stop paying the insurance fee at any
time, thereby surrendering the VA contract, this problem can be considered as
an optimal stopping problem. We utilize a standard approach which formulates
the optimal stopping problem as a variational inequality of the contract value
(see [9]). The variational inequality yields a free boundary which corresponds to
the optimal surrender boundary of the contract (see [6]). When the underlying
fund rises enough to reach the optimal surrender boundary, the policyholder
exercises the surrender option. Based on the Mellin transform techniques,
we obtain the integral equation representations for the VA contract and the
optimal surrender boundary. Then, we numerically solve the integral equations
using the recursive integration method provided by [7].

The rest of this paper is organized as follows: In Section 2, we introduce
and formulate the model of our VA contract with a fixed insurance fee. In Sec-
tion 3, we derive the variational inequality arising from the optimal stopping
problem which is satisfied by the value of the VA contract and obtain the inte-
gral equation representation of the optimal surrender boundary by the Mellin
transform. We present the VA value through a table on several parameters
and present the sensitivity analysis of the optimal surrender boundary and the
expected optimal surrender time in Section 4. In Section 5, we conclude.

2. Model formulation

For a given maturity T > 0, we consider a VA contract with a guaranteed
minimum maturity benefit G > 0. We assume that the contract is initiated at
time t = 0 when the policyholder pays a single premium F0 > 0. The insurer
invests the single premium in the underlying fund or market index.

Let us denote the accumulated fund value of the VA at time t as (Ft)
T
t=0.

In the case of [2], the insurer continuously withdraws a proportional rate of
the accumulated fund value (Ft)

T
t=0 as an insurance fee. In contrast to [2], we

consider a VA contract with a fixed insurance fee. More precisely, it is not that
the insurer withdraws any fee from the policyholder’s account value but that
the policyholder continuously pays a fixed rate of the initial premium to the
insurer at the cost of the insurance company managing the underlying account.
We adopt the usual Black-Scholes framework and thus assume that underlying
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fund (St)
T
t=0 follows a geometric Brownian motion. Under the risk-neutral

measure Q, the dynamics of underlying fund (S)Tt=0 are given by

dSt = rStdt+ σStdWt,(2.1)

where r is the risk-free interest rate and σ > 0 is the constant volatility and
Wt is a standard Brownian motion in the probability space (Ω,F ,Q) with the
filtration (Ft)0≤t≤T generated by the Brownian motion (Wt)0≤t≤T .

Since the insurer does not withdraw any fee from the policyholder’s account
during the contract, we have the following relationship between the policy-
holder’s account and underlying fund:

Ft
F0

=
St
S0
,

and the dynamics of policyholder’s account value at time t is given by

dFt = rFtdt+ σFtdWt.(2.2)

Since we consider the VA contract with the guaranteed minimum maturity
benefit, we assume that the policyholder’s benefit at the maturity T is given
by

max(FT , G).

The policyholder has a right to exercise the surrender option at anytime before
the maturity T . Then, the surrender benefit at time t is given by (1 − κt)Ft,
where κt is the penalty percentage charged on the accumulated fund when
surrendering the contract at time t. As in [2], we assume that κt is exponentially
decreasing in time t and defined by 1− e−κ(T−t), so that the surrender benefit
is given by

e−κ(T−t)Ft,(2.3)

where κ > 0 is a fixed rate of the surrender penalty.
The main feature of our model is that the structure of the insurance fee is

similar to that of the installment option (see [3]). This means that the insurance
fee in our VA contract is paid continuously until the policyholder chooses the
option to surrender the VA contract. Thus, the present value of the cumulative
insurance fee of our VA contract at time t is given by∫ θ

t

e−r(s−t)c ds,(2.4)

where c > 0 is the fixed insurance fee and θ ∈ [t, T ) is the time when the
policyholder surrenders the VA contract.

Then, the concern is on finding the optimal time for the policyholder to
surrender the VA contract. Here, we present the optimal stopping problem:

Problem 2.1. In the absence of arbitrage opportunities, the value V (t, Ft) of
the VA contract at time t is expressed by

V (t, Ft) = sup
θt∈S(t,T )

EQ
t

[
e−r(θt−t)

(
e−κ(T−θt)Fθt1{θt<T}+max(FT , G)1{θt=T}

)
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−
∫ θt

t

e−r(s−t)c ds

]
,(2.5)

where S(t, T ) is the set of all stopping times of the filtration (Ft)Tt=0 taking
values in [t, T ], and the conditional expectation Et [· | Ft] is calculated under
the risk-neutral measure Q.

By a standard approach for the optimal stopping problem (see [9]), the value
V (t, f) satisfies the following variational inequality (VI):

Variational Inequality 1.

∂V

∂t
+ LV − c ≤ 0, if V (t, f) = e−κ(T−t)f,

∂V

∂t
+ LV − c = 0, if V (t, f) > e−κ(T−t)f,

V (T, f) = max(f,G),

(2.6)

on domain of state variable D = {(t, f) | 0 ≤ t < T, 0 < f <∞} and the op-
erator L is given by

L ≡ σ2

2
f2
∂2

∂f
+ rf

∂

∂f
− r.(2.7)

From the standard theory of the variational inequality (see [6]), we can
define a free boundary of the variational inequality. In this model, the optimal
surrender boundary can be defined as

B(t) ≡ sup
{
f > 0 | V (t, f) > e−κ(T−t)f

}
.(2.8)

In terms of the optimal surrender boundary, the domain D can be divided
into two regions: one is the continuation-region (CR) and the other is the
surrender-region (SR), i.e.,

(2.9)
CR ≡ {(t, f) ∈ D | V (t, f) > e−κ(T−t)f}={(t, f) ∈ D | 0 < f < B(t)} ,

SR ≡ {(t, f) ∈ D | V (t, f) = e−κ(T−t)f}={(t, f) ∈ D | f ≥ B(t)} .

Moreover, the value function V (t, f) satisfies the following smooth-pasting con-
ditions at the optimal surrender boundary:

V (t,B(t)) = e−κ(T−t)B(t),
∂V

∂f

∣∣∣∣
f=B(t)

= e−κ(T−t).(2.10)

Since
∂V

∂t
+ LV = c in (t, f) ∈ CR,

and

V (t, f) = e−κ(T−t)f in (t, f) ∈ SR,
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it is easily confirmed that the value V (t, f) satisfies the following non-homo-
geneous partial differential equation (PDE):

∂V

∂t
+ LV = c · 1{f<B(t)} + κe−κ(T−t)f · 1{f≥B(t)}, (t, f) ∈ D

V (t, f) = max(f,G),

(2.11)

with the smooth pasting condition (2.10).
Before proceeding to our main theorem, let us simply derive the value of

the VA without the surrender option. The value of the VA contract without
the surrender option means that the policyholder cannot choose the option
to surrender. Then, the insurance fee c should be continuously paid to the
insurer until the maturity T . Here, we call the value without surrender option
as European part of the value function V (t, f) and denote the value as VE(t, f).
Then, the value of European part VE(t, f) at time t is given by

(2.12)

VE(t, Ft) ≡ EQ
t

[
e−r(T−t) max(FT , G)−

∫ T

t

e−r(s−t)c ds

]

= EQ
t

[
e−r(T−t) max(FT , G)

]
− 1− e−r(T−t)

r
c,

where 1−e−r(T−t)
r c is the present value of the cumulative insurance fee imposed

on the VA contract without the option from the present time t to the maturity
T .

From the definition of the fair insurance fee c∗ in [2], we can deduce that
the fair insurance fee c∗ in our VA contract satisfies the following relationship:

F0 = V c
∗

E (0, F0) = EQ [e−rT max(FT , G)
]
− 1− e−rT

r
c∗,(2.13)

where F0 is the single premium initially paid by the policyholder1.
Since the closed-form of the expectation EQ

t

[
e−r(T−t) max(FT , G)

]
is well

known, we just present the result. By using the closed-form of VE(t, f), we can
easily compute the fair insurance fee c∗ in the following proposition.

Proposition 2.1 (European part for the VA value and fair insurance fee).

(a) The value of the European part VE(t, Ft) at time t is given by

VE(t, Ft) = FtN

(
log(FtG ) + (r + σ2

2 )(T − t)
σ
√
T − t

)

+Ge−r(T−t)N

(
−

log(FtG ) + (r − σ2

2 )(T − t)
σ
√
T − t

)
− 1− e−r(T−t)

r
c,(2.14)

where N (·) is a standard cumulative normal distribution function.

1In the VA contract without surrender option, it is fair that the initial fund premium F0

should be equal to the value V c
E(0, F0).
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(b) The fair insurance fee c∗ of the VA contract is given by

(2.15)

c∗ =

(
1− e−rT

r

)−1 [
Ge−rT · N

(
−

log(F0

G ) + (r − σ2

2 )T

σ
√
T

)

−F0N

(
−

log(F0

G ) + (r + σ2

2 )T

σ
√
T

)]
.

3. Integral equation representation

In this section, we will derive the integral equation solutions for the value
V (t, f) of VA contract and the optimal surrender boundary B(t). To solve
the PDE problem (2.11) with boundary conditions (2.10), we use the Mellin
transform, which is one of the transform techniques to derive the analytic
solution of the Black-Scholes PDE with boundary conditions (see [1], [5], and
[11]). In Appendix A, we briefly review the definition of the Mellin transform
and some basic properties.

The next theorem provides the integral equation solutions for V (t, f) and
the corresponding optimal surrender boundary B(t) by applying the Mellin
transform techniques.

Theorem 3.1 (Main theorem).

(a) The value V (t, Ft) of the VA contract can be decomposed into the Eu-
ropean part VE(t, Ft) and the early surrender premium part VP (t, Ft),

V (t, Ft) = VE(t, Ft) + VP (t, Ft),(3.1)

where the European part is given in (2.14) and the early surrender
premium VP (t, Ft) is represented by

VP (t, Ft) = − κe−κ(T−t)Ft
∫ T

t

eκ(ξ−t)N

 log( Ft
B(ξ) ) + (r + σ2

2 )(ξ − t)
σ
√
ξ − t

 dξ

+ c

∫ T

t

e−r(ξ−t)N

 log( Ft
B(ξ) ) + (r − σ2

2 )(ξ − t)
σ
√
ξ − t

 dξ.(3.2)

(b) The optimal surrender boundary is the solution of the following integral
equation:

V (t,B(t)) = e−κ(T−t)B(t).(3.3)

Proof. See Appendix B. �

4. Implications

Based on the integral equations in Theorem 3.1, we evaluate the accuracy of
values derived from the integral equations by comparing them with benchmark
values derived from the binomial tree method (BTM). To obtain the numerical
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values for the integral equations of V (t, f) and B(t), we utilize the recursive
integration method (RIM) proposed by [7].

Table 1. Comparison of the VA values (BTM and RIM) un-
der the F0 = 100, r = 0.03, σ = 0.2 and T = 10.

c∗ κ G BTM
(104)

BTM
(105)

RIM (20) RIM (200) RIM
(2000)

RIM
(4-pt)

0.0126 0 100 102.2088 102.2096 102.3212 102.1946 102.1808 102.1750
0.0126 c∗/6 100 101.1762 101.1764 101.2528 101.1442 101.1326 101.1511
0.0126 c∗/4 100 100.7403 100.7405 100.7855 100.6859 100.6754 100.6904
0.0212 0 120 102.9602 102.9602 103.0065 103.0219 103.0226 102.9466
0.0212 c∗/6 120 101.4007 101.4010 101.4208 101.4310 101.4114 101.3873
0.0212 c∗/4 120 100.7875 100.7871 100.7570 100.7648 100.7651 100.7928

RMSE · · 1.546×
10−1

9.720×
10−2

1.070×
10−1

6.824×
10−2

CPU time (sec) 5.910 7.127×102 1.771×
10−1

1.302× 101 1.201× 102 5.067×
10−2

Table 1 provides the VA contract values derived by the BTM and the RIM
for varying κ and G, respectively. We set the single premium F0 equal to
100. The values of the fair insurance fee c∗ in the first column are determined
from the formula in Proposition 2.1(b). The contract values via the BTM
are presented for each time-steps n = 10000 and 100000, respectively, and
the values via the RIM are presented for each time-steps n = 20, 200, and
2000, respectively. Moreover, we provide other values of the RIM where a four-
point Richardson extrapolation scheme is used to accelerate the convergence
of the RIM. We measure the accuracy of the integral equations by calculating
the root-mean-square errors (RMSEs) between the RIM values and the BTM
values with time-steps n = 100000, and provide computing times (CPU time)
for using each method. The RMSE values indicate that the RIM with time
step n = 200, having 9.7199 × 10−2 RMSE, is more accurate than the RIM
with other time-steps n = 20 and 2000. Meanwhile, the RIM with a four-
point Richardson extrapolation scheme shows the best results in terms of both
accuracy and efficiency, having 6.8235× 10−2 RMSE and taking 5.0667× 10−2

seconds. This implies that the RIM under this extrapolation scheme does shed
light on the advantage of our integral representation results.

Note that in our parameter sets, all the VA values are greater than 100.
Because of the early surrender premium V c

∗

P (0, F0), the VA value V c
∗
(0, F0) is

higher than the single premium F0 paid initially, i.e.,

V c
∗
(0, F0) = V c

∗

E (0, F0) + V c
∗

P (0, F0) = F0 + V c
∗

P (0, F0) > F0.

In Figure 1, we illustrate the sensitivity of the optimal surrender boundary
B(t) for sevaral parameters. The baseline parameters are given as follows:

(4.1) T = 10, r = 0.03, c∗ = 1.26, κ = 0, σ = 0.2 and G = 100.
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Figure 1. Sensitivity analysis of the optimal surrender boundary.

Figure 1(a) shows that the higher the risk-free interest rate is, the lower the
surrender boundary is. This implies that in the policyholder’s view, the higher
the interest rate of the fund is, the more advantageous it is to own the under-
lying fund by surrendering the VA contract. That is, the policyholder tends to
surrender the contract at the lower surrender boundary. On the other hand,
Figure 1(b) shows that the surrender boundary is high, when the volatility is
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large. This indicates that if the volatility σ is large, the possession of the fund
is disadvantageous. Figure 1(c) shows that the lower the fair insurance fee is,
the higher the surrender boundary is. This implies that the lower the insurance
fee c is, the lower the tendency is to terminate the contract by surrendering
the VA contract. On the other hand, Figure 1(d) shows that if the surrender
penalty constant κ is lower, the policyholder tends to surrender the VA con-
tract at relatively lower surrender boundary. Figure 1(e) shows that the larger
the guaranteed minimum benefit G is, the higher the surrender boundary is.
In other words, the VA value increases as the guaranteed minimum benefit G
increases. Since the optimal surrender boundary is a function of the time-to-
maturity (T − t), it is natural to appear like Figure 1(f) where the optimal
surrender boundaries under different maturities are drawn over time t.
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Figure 2. Sensitivity analysis of the expected optimal sur-
render time.

Now, we investigate the expected optimal surrender time when the policy-
holder is expected to surrender the contract based on the optimal surrender
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boundary in (3.3). Let us denote θ∗ as the optimal surrender time. Note that
since θ∗ is a random time depending on the scenario of the underlying fund
value, we estimate the expected optimal surrender time under the risk-neutral
measure Q. Then, we define the expected optimal surrender time by, respec-
tively,

(4.2) EQ[θ∗] where θ∗ ≡ inf
{
t ∈ [0, T ] | Ft ≥ B(t)

}
.

By utilizing the Monte-Carlo simulation method with 100 time-steps and
100,000 paths, we estimate values of the expected optimal surrender time val-
ues under several parameters and illustrate the estimated values in Figure 2.
The baseline parameters are the same as the values in (4.1). In Figures 2(a)
and 2(b), we observe the negative relationship between the interest rate and the
expected surrender time, and the positive relationship between the volatility
and the expected surrender time, respectively. These relationships are consis-
tent with the tendency of the optimal exercise time of general American-type
derivative in that the optimal exercise time of the American-type derivative
shortens as the sharpe ratio of the underlying asset increases. In Figures 2(c)
and 2(d), we observe the negative relationship between the fixed insurance fee
and the expected optimal surrender time, and the positive relationship between
the penalty rate and the expected surrender time, respectively. These relation-
ships are intuitive in that an increase in the insurance fee is a decrease in the
contract value, and an increase in the penalty rate is an increase in the value.
In terms of the policyholder, thus, it is beneficial to surrender early if the in-
surance fee increases, meanwhile it is beneficial to surrender late if the penalty
rate increases.

5. Concluding remarks

In this paper, we have proposed a new model of a VA contract with a
surrender option. In our model, the insurer does not withdraw any insurance
fee from the policyholder’s account, but the policyholder continuously pays the
fixed insurance fee until the policyholder exercises the surrender option. Our
model’s problem can be categorized as an optimal stopping problem. Based on
the Mellin transform, we have derived the integral equation solutions for the
VA value and the optimal surrender boundary. We have solved numerically the
integral equations and provide the values of the contract value function, the
optimal surrender boundary, and the expected optimal surrender time under
several model parameters.

For the analytic tractability of our model, we have adopted the Black-Scholes
market framework. Consideration of stochastic volatility models or other gen-
eral market frameworks, however, will not only make some technical contribu-
tions, but also shed more insight on understanding the effects of the surrender
option and the fixed insurance fee.



SURRENDER TIME FOR VARIABLE ANNUITY WITH FIXED INSURANCE FEE 359

Appendix A. Review of Mellin transform

Definition (Definition of the Mellin transform and inverse Mellin transform).
Let g(·) be a complex-valued and locally integrable function on (0,∞). Then,
the Mellin transform M(g(·);w) is defined as

M(g(f);w) = ĝ(w) ≡
∫ ∞
0

g(f)fw−1df, w ∈ C.(A.1)

If this integral converges for a < Re(w) < b, then the inverse of the Mellin
transform is

g(f) =M−1(ĝ(w); f) ≡ 1

2πi

∫ c+i∞

c−i∞
ĝ(w)f−wdw.(A.2)

Remark A.1 (Basic properties of the Mellin transform).

(a) (Convolution property of Mellin transform). Let g(·) and h(·) be locally
integrable functions on (0,∞). For given a < w < b, let us denote

the Mellin transform of g(f) and h(f) as ĝ(w) and ĥ(w), respectively.
Then, we define the Mellin convolution which is given by the inverse

Mellin transform of ĝ(w)ĥ(w):

g(f) ∨ h(f) ≡M−1(ĝ(w)ĥ(w); f)

=
1

2πi

∫ c+i∞

c−i∞
ĝ(w)ĥ(w)f−wdw =

∫ ∞
0

g

(
f

u

)
h(u)

du

u
.(A.3)

(b) (Inverse Mellin transform of exponential function). For given c1, c2
with Re(c1) > 0 and Mellin transform ĝ(w) = ec1(w+c2)

2

of g(·), the
inverse Mellin transform of ĝ(w) is given

g(f) =M−1(ĝ(w); f) =
1

2
(πc1)−

1
2 f c2e−

1
4c1

(log(f))2 .(A.4)

Appendix B. Proof of Theorem 3.1

Proof of (a). The non-homogeneous PDE in (2.11) can be rewritten as

(B.1)
∂V

∂t
+ LV = ψ(t, f) and V (T, f) = φ(f),

where

ψ(t, f) = c1{f<B(t)} + κe−κ(T−t)f1{f≥B(t)} and φ(f) = max(f,G).

By applying the Mellin transform to the PDE (B.1), the non-homogeneous PDE
problem (B.1) can be transformed to the following non-homogeneous ordinary
differential equation (ODE):

(B.2)
dV̂

dt
(t, w) +

1

2
σ2A(w)V̂ (t, w) = ψ̂(t, w),

where V̂ and ψ̂ are the Mellin transforms of the value function V and ψ,
respectively, andA(w) is a quadratic function givenA(w) = w2+(1− 2r

σ2 )w− 2r
σ2 .
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Then, we can easily deduce that the solution of non-homogeneous ODE (B.2)
is given by

(B.3) V̂ (t, w) = e
1
2σ

2A(w)(T−t)φ̂(w)−
∫ T

t

e
1
2σ

2A(w)(ξ−t)ψ̂(ξ, w)dξ,

where φ̂ is the Mellin transform of the function φ.
From the definition of the inverse Mellin transform in Appendix A, we can

derive the following equation:

(B.4)

V (t, f) =
1

2πi

∫ c+i∞

c−i∞
e

1
2σ

2A(w)(T−t)φ̂(w)dw

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

e
1
2σ

2A(w)(ξ−t)ψ̂(ξ, w)dξdw.

Here, we will derive the analytic one-dimensional integral solution by using
the properties of the Mellin transform. Let us define the kernel function K(t, f)
as follows:

K(s, f) =
1

2πi

∫ c+i∞

c−i∞
e

1
2σ

2A(w)sf−wdw.

Then, K(t, f) can be expressed in the following form:

(B.5) K(t, f) = exp
(
−α( 1+2r/σ2

2 )2
) 1

2πi

∫ c+i∞

c−i∞
eα(w+β)2f−wdw,

where α = σ2t
2 and β = 1−2r/σ2

2 .
We can easily deduce that the right-hand side of the equation (B.5) is the

inverse Mellin transform of the exponential function eα(w+β)2 .
By using the property in A, we can get the following equation:

(B.6) K(s, f) = exp

(
−σ

2s
2

(
1+2r/σ2

2

)2) f
1−2r/σ2

2

σ
√

2πs
e
− 1

2 (
log(f)

σ
√
s

)2
.

Then, the value function (B.4) can be expressed in terms of the Mellin
transform of the kernel function K(t, f):

(B.7)

V (t, f) =
1

2πi

∫ c+i∞

c−i∞
K̂(T − t, w)φ̂(w)dw

− 1

2πi

∫ c+i∞

c−i∞

∫ T

t

K̂(ξ − t, w)ψ̂(ξ, w)dξdw.

By using the convolution property of the Mellin transform in Appendix A,
the value V (t, f) can be given as the following integral equation:

(B.8)

V (t, f) =

∫ ∞
0

φ(u)K
(
T − t, fu

) 1

u
du

−
∫ T

t

∫ ∞
0

ψ(ξ, u)K
(
ξ − t, fu

) 1

u
dudξ.
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Let us calculate the first integral term of the right-hand side in (B.8). If the
function φ is directly assigned to the first integral term, the integral equations
are given as follows:

(B.9)

∫ ∞
0

φ(u)K
(
T − t, fu

) 1

u
du =

∫ ∞
0

max(u,G)K
(
T − t, fu

) 1

u
du

=

∫ G

0

G · K
(
T − t, fu

) 1

u
du

+

∫ ∞
G

u · K
(
T − t, fu

) 1

u
du.

By assigning the kernel function K in (B.6) to the first term of the above
integral equation (B.9), we can derive the following equations:
(B.10)∫ G

0

G · K
(
T − t, fu

) 1

u
du

=

∫ G

0

Ge
−σ22 (T−t)

(
1+2r/σ2

2

)2

(f/u)
1−2r/σ2

2

σ
√

2π(T − t)
e
− 1

2 (
log(f/u)

σ
√
T−t )2 1

u
du

= Ge
−σ22 (T−t)

(
1+2r/σ2

2

)2∫ ∞
log(f/G)

ew(
1−2r/σ2

2 )

σ
√

2π(T − t)
e
− 1

2 (
w

σ
√
T−t )

2

dw, (w=log(f/u))

= Ge−r(T−t)
1

σ
√

2π(T − t)

∫ ∞
log(f/G)

exp

{
−1

2

(
w− 1−2r/σ2

2 (σ2(T−t))
σ
√
T−t

)2
}
dw

= Ge−r(T−t)
1√
2π

∫ − log(f/G)+(r−σ
2

2
)(T−t)

σ
√
T−t

−∞
e−

z2

2 dz,

(
z =

w− 1−2r/σ2

2 (σ2(T−t))
σ
√
T−t

)
= Ge−r(T−t)N

(
−

log(f/G) + (r − σ2

2 )(T − t)
σ
√
T − t

)
,

where N (·) is a standard cumulative normal distribution function.
Similar to the second term of the integral equation (B.9), we can get the

following equations:

∫ ∞
G

u · K
(
T − t, fu

) 1

u
du

(B.11)

=

∫ ∞
G

u · e
−σ22 (T−t)

(
1+2r/σ2

2

)2

(f/u)
1−2r/σ2

2

σ
√

2π(T − t)
e
− 1

2 (
log(f/u)

σ
√
T−t )2 1

u
du

= fe
−σ22 (T−t)

(
1+2r/σ2

2

)2∫ log(f/G)

−∞

e−w(
1+2r/σ2

2 )

σ
√

2π(T − t)
e
− 1

2 (
w

σ
√
T−t )

2

dw, (w=log(f/u))
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= f
1

σ
√

2π(T − t)

∫ log(f/G)

−∞
exp

−1

2

(
w + ( 1+2r/σ2

2 )σ2(T − t)
σ
√
T − t

)2
 dw

= f
1√
2π

∫ log(f/G)+(r+σ
2

2
)(T−t)

σ
√
T−t

−∞
e−

z2

2 dz,

(
z =

w+
1+2r/σ2

2 (σ2(T−t))
σ
√
T−t

)
= f · N

(
log(f/G) + (r + σ2

2 )(T − t)
σ
√
T − t

)
.

Since the computation of the second integral term in (B.8) is almost same as
that of the first term, we omit the detailed computation here. If the function ψ
is directly assigned to the second term, the integral equation can be rewritten
by
(B.12)∫ T

t

∫ ∞
0

ψ(ξ, u)K
(
ξ − t, fu

) 1

u
dudξ

=

∫ T

t

∫ ∞
0

(
c · 1{u<B(ξ)} + κe−κ(T−ξ)u · 1{u≥B(ξ)}

)
K
(
ξ − t, fu

) 1

u
dudξ

=

∫ T

t

∫ B(ξ)
0

c · K
(
ξ − t, fu

) 1

u
dudξ

+

∫ T

t

∫ ∞
B(ξ)

κe−κ(T−ξ)u · K
(
ξ − t, fu

) 1

u
dudξ.

The computation in the first term of the last equation (B.12) is the same as
that of the equation (B.10). Thus, we can easily deduce the following equation:

(B.13)

∫ T

t

∫ B(ξ)
0

c · K
(
ξ − t, fu

) 1

u
dudξ

=

∫ T

t

e−r(ξ−t)c · N
(
−

log( f
B(ξ) )+(r−σ22 )(ξ−t)

σ
√
ξ−t

)
dξ

=

∫ T

t

e−r(ξ−t)c ·
{

1−N
(

log( f
B(ξ) )+(r−σ22 )(ξ−t)

σ
√
ξ−t

)}
dξ

=
1− e−r(T−t)

r
c− c ·

∫ T

t

e−r(ξ−t) · N
(

log( f
B(ξ) )+(r−σ22 )(ξ−t)

σ
√
ξ−t

)
dξ.

Similarly, the second term of the last equation (B.12) is almost similar to
the computation of the equation (B.11). Thus, we can derive the following
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equation:

(B.14)

∫ T

t

∫ ∞
B(ξ)

κe−κ(T−ξ)u · K
(
ξ − t, fu

) 1

u
dudξ

= κe−κ(T−t)f ·
∫ T

t

eκ(ξ−t)N

 log( f
B(ξ) ) + (r + σ2

2 )(ξ − t)
σ
√
ξ − t

 dξ.

Combining all the integral equations of (B.10), (B.11), (B.13) and (B.14),
we can derive the following analytic integral equation solution:

V (t, f)

= fN
(

log( fG )+(r+σ2

2 )(T−t)
σ
√
T−t

)
+Ge−r(T−t)N

(
− log( fG )+(r−σ22 )(T−t)

σ
√
T−t

)
− 1− e−r(T−t)

r
c− κe−κ(T−t)f ·

∫ T

t

eκ(ξ−t)N
(

log( f
B(ξ) )+(r+σ2

2 )(ξ−t)
σ
√
ξ−t

)
dξ

+ c ·
∫ T

t

e−r(ξ−t)N
(

log( f
B(ξ) )+(r−σ22 )(ξ−t)

σ
√
ξ−t

)
dξ

= VE(t, f) + VP (t, f).

Proof of (b). By using the smooth-pasting conditions at the optimal surrender
boundary in (2.10) and the analytic integral equation solution in (3.2), the op-
timal surrender boundary can be given as the solution of the following integral
equation:

V (t,B(t)) = e−κ(T−t)B(t).
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