DOI QR코드

DOI QR Code

Characteristics of Non-nano Needle Type Zinc Oxide and Its Application in Sunscreen Cosmetics

Non-nano 막대형 산화아연의 특성 및 자외선 차단용 화장품에의 응용

  • 정겨운 (선진뷰티사이언스 R&D Center) ;
  • 현송화 (선진뷰티사이언스 R&D Center) ;
  • 윤여민 (선진뷰티사이언스 R&D Center) ;
  • 김상욱 (선진뷰티사이언스 R&D Center) ;
  • 최부건 (선진뷰티사이언스 R&D Center) ;
  • 이성호 (선진뷰티사이언스 R&D Center) ;
  • 박수남 (선진뷰티사이언스 R&D Center) ;
  • 이종성 (성균관대학교 생명공학대학)
  • Received : 2020.10.22
  • Accepted : 2020.12.24
  • Published : 2021.03.30

Abstract

With increasing interest in the effectiveness and safety of sunscreen worldwide, research on the development of new inorganic sunscreen is also gaining momentum. In the present study, non-nano sized needle type zinc oxide, which can meet the regulation of nano-material as a recent problem, has been synthesized and surface-modified with cetyl alcohol to obtain needle type zinc oxide powder. Here, we also investigated their physical properties and evaluated their potential application as sunscreens. As a result of the experiment, the sunscreen with needle type zinc oxide powder, which was non-nano, showed similar UV-protection properties and transparency compare to that of 40nm size zinc oxide. It was further confirmed that the UV blocking effect was significantly increased when the needle type zinc oxide dispersion was applied to the sunscreen. Therefore, although the needle type zinc oxide is non-nano (200 nm) material, it has the potential to be applied to the product as an excellent transparency (improvement of whiteness), UV protection efficacy and smooth texture.

전 세계적으로 자외선 차단제의 유효성 및 안전성에 대한 관심이 증가함에 따라 새로운 무기 자외선 차단제 개발에 대한 연구도 활기를 띄고 있다. 본 연구에서는 최근에 이슈화된 나노물질규제에 대응 가능한 나노 사이즈가 아닌 non-nano 막대형 산화아연을 합성하였고, 이를 세틸알코올로 표면처리한 막대형 산화아연분체를 개발하여 물리적 특성을 조사하였으며 자외선 차단제로서의 응용가능성을 평가하였다. 실험 결과, non-nano인 막대형 산화아연 분체를 적용한 선크림의 자외선 차단 효능과 백탁 정도는 40 nm 크기의 산화아연과 비슷한 결과를 나타냈으며, 막대형 산화아연 분산액을 사용한 선크림은 자외선 차단효능이 현저히 증가함을 확인하였다. 따라서 본 연구를 통해 개발된 막대형 산화아연 분체는 non-nano (200 nm)임에도 불구하고 투명성(백탁 개선), 자외선 차단 효능 그리고 사용감 측면에서 우수한 자외선 차단제로서 응용 가능성이 있음을 시사하였다.

Keywords

References

  1. S. H. Xuan, Y. M. Park, J. H. Ha, Y. J. Jeong, and S. N. Park, The effect of dehydroglyasperin C on UVB- mediated MMPs expression in human HaCaT cells, Pharmacol Rep., 69(6), 1224 (2017). https://doi.org/10.1016/j.pharep.2017.05.012
  2. K. S. Lee, and S. N. Park, Cytoprotective effects and mechanisms of quercetin, quercitrin and avicularin isolated from Lespedeza cuneata G. Don against ROS-induced cellular damage, J. Ind. Eng. Chem., 71, 160 (2019). https://doi.org/10.1016/j.jiec.2018.11.018
  3. J. Krutmann, A. Bouloc, G. Sore, B. A. Bernard, and T. Passeron, The skin aging exposome, J. Dermatol. Sci., 85(3), 152 (2017). https://doi.org/10.1016/j.jdermsci.2016.09.015
  4. T. Schikowski, and A. Huls, Air pollution and skin aging, Curr. Environ. Health Rep., 7(1), 58 (2020). https://doi.org/10.1007/s40572-020-00262-9
  5. A. Kammeyer, and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16 (2015). https://doi.org/10.1016/j.arr.2015.01.001
  6. K. J. Kim, S. H. Xuan, and S. N. Park, Licoricidin, an isoflavonoid isolated from Glycyrrhiza uralensis Fisher, prevents UVA-induced photoaging of human dermal fibroblasts, Int. J. Cosmet. Sci., 39(2), 133 (2017). https://doi.org/10.1111/ics.12357
  7. T. Pillaiyar, M. Manickam, and S. H. Jung, Recent development of signaling pathways inhibitors of melanogenesis, Cell. Signal., 40, 99 (2017). https://doi.org/10.1016/j.cellsig.2017.09.004
  8. S. H. Xuan, Y. M. Park, and S. N. Park, Antimelanogenic and antimigration properties of the ethyl acetate fraction of Calendula officinalis flowers on melanoma cells, Photochem. Photobiol., 95(3), 860 (2019). https://doi.org/10.1111/php.13064
  9. C. Stiefel, and W. Schwack, Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects, Int. J. Cosmet. Sci., 37(1), 2 (2015). https://doi.org/10.1111/ics.12165
  10. S. L. Schneider, and H. W. Lim, A review of inorganic UV filters zinc oxide and titanium dioxide, Photodermatol., Photoimmunol. Photomed., 35(6), 442 (2019). https://doi.org/10.1111/phpp.12439
  11. K. B. Kim, Y. W. Kim, S. K. Lim, T. H. Roh, D. Y. Bang, S. M. Choi, D. S. Lim, Y. J. Kim, S. H. Baek, M. K. Kim, H. S. Seo, M. H. Kim, H. S. Kim, J. Y. Lee, S. Kacew, and B. M. Lee, Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens, J. Toxicol. Environ. Health Part B, Critical reviews, 20(3), 155 (2017). https://doi.org/10.1080/10937404.2017.1290516
  12. FDA, Sunscreen drug products for over the counter human use; Amendment to the tentative final monograph; Enforcement policy., Federal Register, 63, 56584 (1998).
  13. K. M. Tyner, A. M. Wokovich, D. E. Godar, W. H. Doub, and N. Sadrieh, The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance, Int. J. Cosmet. Sci., 33(3), 234 (2011). https://doi.org/10.1111/j.1468-2494.2010.00622.x
  14. M. J. Osmond, and M. J. McCall, Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard, Nanotoxicology, 4(1), 15 (2010). https://doi.org/10.3109/17435390903502028
  15. M. Ramasamy, M. Das, S. S. An, and D. K. Yi, Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells, Int. J. Nanomedicine, 9, 3707 (2014). https://doi.org/10.2147/IJN.S65086
  16. E. Tang, G. Cheng, X. Ma, X. Pang, and Q. Zhao, Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surf. Sci., 252(14), 5227 (2006). https://doi.org/10.1016/j.apsusc.2005.08.004
  17. S. K. Choi, Y. H. Roh, J. H. Choo, Y. J. Choi, H. H. Kang, and O. S. Lee, Effect of rheological properties on mascare by water-soluble gelling agents, J. Soc. Cosmet. Sci. Korea, 33(3), 159 (2007).