DOI QR코드

DOI QR Code

Synoptic Structures and Precipitation Impact of Extratropical Cyclones Influencing on East Asia Megacities: Seoul, Beijing, Tokyo

동아시아 대도시에 영향을 미치는 온대저기압의 특성 및 강수 영향 비교: 서울, 베이징, 도쿄

  • Kim, Donghyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Jaeyeon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kang, Joonsuk M. (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
  • 김동현 (서울대학교 지구환경과학부) ;
  • 이재연 (서울대학교 지구환경과학부) ;
  • 강준석 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2020.11.11
  • Accepted : 2021.01.13
  • Published : 2021.03.31

Abstract

The synoptic structures and precipitation impact of extratropical cyclones (ETCs) influencing on the three adjacent megacities in East Asia, i.e., Beijing (Beijing ETCs), Seoul (Seoul ETCs) and Tokyo (Tokyo ETCs), are analyzed using ERA-interim reanalysis data from 1979 to 2018. Individual ETC tracks are identified with the automated tracking algorithm applied to 850-hPa relative vorticity field. Among four seasons, ETCs are the most frequent in spring. In this season, Beijing ETCs are mainly generated at the leeside of Altai-Sayan Mountains and primarily develop through interaction between the upper-level trough and lower-level cyclonic circulation. For Seoul ETCs, the leesides of Altai-Sayan Mountains (Seoul-N ETCs) and Tibetan Plateau (Seoul-S ETCs) are main genesis regions and the features of ETCs are different according to the genesis regions. While Seoul-N ETCs mainly develope by the same mechanism of Beijing ETCs, strong diabatic heating due to vapor transport is responsible for the genesis of Seoul-S ETCs. Tokyo ETCs are originated from the leesides of Tibetan Plateau and Kuroshio-Oyashio Extension regions, and strong diabatic heating as well as interaction between upper and lower levels determines the genesis of these ETCs. The precipitation impact resulting from ETCs become strong in the order of Beijing ETCs, Seoul-N ETCs, Seoul-S ETCs, and Tokyo ETCs and accounts for up to 40%, 27%, 52%, and 70% of regional precipitation, respectively.

Keywords

References

  1. Adachi, S., and F. Kimura, 2007: A 36-year climatology of surface cyclogenesis in East Asia using high-resolution reanalysis data. SOLA, 3, 113-116, doi:10.2151/sola.2007-029.
  2. Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the Northeast United States. J. Hydrometeor., 16, 2537-2557, doi:10.1175/JHM-D-14-0147.1.
  3. Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski Jr., 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Clim. Dyn., 50, 1819-1839, doi:10.1007/s00382-017-3724-8.
  4. Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Clim. Dyn., 52, 1739-1760, doi:10.1007/s00382-018-4223-2.
  5. Ahmadi-Givi. F., 2002: A review of the role of latent heat release in extratropical cyclones within potential vorticity framework. J. Earth Space Phys., 28, 7-20.
  6. Ahmadi-Givi. F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Q. J. R. Meteorol. Soc., 130, 295-323, doi:10.1256/qj.02.226.
  7. Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717-725, doi:10.1175/2007JAMC1689.1.
  8. Booth, J. F., H. E. Rieder, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high-wind events in the Northeastern United States. J. Appl. Meteor. Climatol., 54, 1871-1885, doi:10.1175/JAMC-D-14-0320.1.
  9. Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163-2183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
  10. Chen, L., B. Tan, N. G. Kvamsto, and O. M. Johannessen, 2014: Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets. Tellus A, 66, 21889, doi:10.3402/tellusa.v66.21889.
  11. Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1991: Synoptic climatology of cyclogenesis over East Asia, 1958-1987. Mon. Wea. Rev., 119, 1407-1418, doi:10.1175/1520-0493(1991)119<1407:SCOCOE>2.0.CO;2.
  12. Chung, Y., K. D. Hage, and E. R. Reinelt, 1976: On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian Mountains. Mon. Wea. Rev., 104, 879-891, doi:10.1175/1520-0493(1976)104<0879:OLCAAI>2.0.CO;2.
  13. Dacre, H. F., O. Martinez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm con-veyor belt airflows. J. Hydrometeor., 20, 1183-1196, doi:10.1175/JHM-D-18-0175.1.
  14. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.
  15. Dowdy, A. J., and J. L. Catto, 2017: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep., 7, 40359, doi:10.1038/srep40359.
  16. Eiras-Barca, J., A. M. Ramos, J. G. Pinto, R. M. Trigo, M. L. R. Liberato, and G. Miguez-Macho, 2018: The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dynam., 9, 91-102, doi:10.5194/esd-9-91-2018.
  17. Guo, Y., T. Shinoda, B. Guan, D. E. Waliser, and E. K. M. Chang, 2020: Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones. J. Climate, 33, 7817-7834, doi:10.1175/JCLI-D-19-0126.1.
  18. Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the Western North Pacific. Mon. Wea. Rev., 128, 851-863, doi:10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.
  19. Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866.
  20. Heo, K.-Y., J.-S. Shim, J.-I. Kwon, J.-Y. Jeong, K.-S. Park, and J.-W. Choi, 2013: Abnormal storm waves around the Korean Peninsula: A case study of an extratropical explosive cyclone over East Sea. J. Coastal Res., 65, 720-725, doi:10.2112/SI65-122.1.
  21. Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573-2586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.
  22. Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458-3465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.
  23. Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 1362-1373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.
  24. Hoskins, B. J., and K. I. Hodges, 2002: New Perspectives on the Northern Hemisphere Winter Storm Tracks. J. Atmos. Sci., 59, 1041-1061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.
  25. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc., 111, 877-946, doi:10.1002/qj.49711147002.
  26. Kamae, Y., W. Mei, and S.-P. Xie, 2017: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan Ser.II, 95, 411-431, doi:10.2151/jmsj.2017-027.
  27. Kang, J. M., J. Lee, S.-W. Son, J. Kim, and D. Chen, 2020: The rapid intensification of East Asian cyclones around the Korean Peninsula and their surface impacts. J. Geophys. Res. Atmos., 125, e2019JD031632, doi:10.1029/2019JD031632.
  28. Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 59-74, doi:10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.
  29. Leckebusch, G. C., and U. Ulbrich, 2004: On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob. Planet. Change, 44, 181-193, doi:10.1016/j.gloplacha.2004.06.011.
  30. Lee, T. Y., and Y. H. Kim, 2007: Heavy precipitation systems over the Korean peninsula and their classification. J. Korean Meteor. Soc., 43, 367-396.
  31. Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. Chen, 2019: Extratropical cyclones over East Asia: climatology, seasonal cycle, and long-term trend. Clim. Dyn., 54, 1131-1144, doi:10.1007/s00382-019-05048-w.
  32. Li, W.-L., R.-D. Xia, J.-H. Sun, S.-M. Fu, L.-Z. Jiang, B.-F. Chen, and F.-Y. Tian, 2019: Layer-wise formation mechanisms of an entire-troposphere-thick extratropical cyclone that induces a record-breaking catastrophic rainstorm in Beijing. J. Geophys. Res. Atmos., 124, 10567-10591, doi:10.1029/2019JD030868.
  33. Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979-2010). Part I: climatology and potential vorticity evolution. J. Climate, 27, 3-26, doi:10.1175/JCLI-D-12-00720.1.
  34. Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 6770-6780, doi:10.1175/JCLI-D-11-00705.1.
  35. Pfahl, S., and M. Sprenger, 2016: On the relationship between extratropical cyclone precipitation and intensity. Geophys. Res. Lett., 43, 1752-1758, doi:10.1002/2016GL068018.
  36. Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Q. J. R. Meteorol. Soc., 129, 2989-3012, doi:10.1256/qj.02.174.
  37. Ren, X., X. Yang, and C. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 3222-3233, doi:10.1175/2009JCLI3225.1.
  38. Rosenfeld, A., and A. C. Kak, 1976: Digital picture processing. Academic Press, 490 pp.
  39. Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595-612, doi:10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.
  40. Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849-874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.
  41. Takahashi, H. G., and T. Yamazaki, 2020: Impact of sea surface temperature near Japan on the extra-tropical cyclone induced heavy snowfall in Tokyo by a regional atmospheric model. SOLA, 16, 206-211, doi:10.2151/sola.2020-035.
  42. Takano, I., 2002: Analysis of an intense winter extratropical cyclone that advanced along the south coast of Japan. J. Meteor. Soc. Japan Ser.II, 80, 669-695, doi:10.2151/jmsj.80.669.
  43. Whittaker, L. M., and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four mid-season months. Int. J. Climatol., 4, 297-310, doi:10.1002/joc.3370040307.
  44. Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 2234-2250, doi:10.1175/JAS-D-12-0226.1.
  45. Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607-626, doi:10.1175/JHM583.1.
  46. Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the Northwestern Pacific region. Mon. Wea. Rev., 132, 1121-1142, doi:10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.
  47. Zhang, Y., Y. Ding, and Q. Li, 2012: A climatology of extratropical cyclones over East Asia during 1958-2001. Acta. Meteorol. Sin., 26, 261-277, doi:10.1007/s13351-012-0301-2.
  48. Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 1814-1823, doi:10.1029/2018GL079071.
  49. Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 1999-2002, doi:10.1029/94GL01710.
  50. Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.