초록
The semiconductor and display equipment demands an ultra-fine precision of several nm to several ㎛, and the scale is getting smaller due to the explosive development. The manufacturing process equipment for such products with ultra-fine precision is very sensitive to ultra-small vibrations flowing from the floor, resulting in problems of production defects and yield degradation. The vibration criteria are a standard that regulates the vibration environment of the floor where such precision process equipment will be installed. The BBN vibration criteria defined the allowable vibration velocity level in the frequency domain with a flat and inclined line and presented a rating according to it. However, the actual vibration criteria have appeared with various magnitudes in the frequency domain according to the dynamic characteristics of individual equipment. In this study, the relationship between the relative motion of two major points in the equipment and the vibration magnitude of the floor is presented using the frequency response function of a simple 3-DOF model. It is describing the magnitudes according to the frequency of the floor vibration that guarantees the allowable relative motion and this can be used as the vibration criteria. In order to obtain the vibration criteria experimentally a method of extracting through a modal test was introduced and verified analytically. It provides vulnerable frequency and magnitude to floor vibration in consideration of the dynamic characteristics of individual equipment. And it is possible to know necessary to improve the dynamic characteristics of the equipment, and it can be used to check the vibration compatibility of the place where the equipment will be installed.