DOI QR코드

DOI QR Code

Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice

  • Hong, Saetbyul (Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Seung-Eun (Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Kang, Insung (Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Yang, Jehoon (Animal Research and Molecular Imaging Center, Samsung Medical Center) ;
  • Kim, Hunnyun (Animal Research and Molecular Imaging Center, Samsung Medical Center) ;
  • Kim, Jeyun (Animal Research and Molecular Imaging Center, Samsung Medical Center) ;
  • Kang, Kyung-Sun (Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
  • Received : 2020.06.23
  • Accepted : 2020.10.28
  • Published : 2021.01.31

Abstract

Background: Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription factors, to repair degenerated lesions has been considered a novel therapy. Objectives: The therapeutic effects on NPC by human iNSCs generated by our research group have not yet been studied in vivo; in this study, we investigate those effects. Methods: We used an NPC mouse model to efficiently evaluate the therapeutic effect of iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patientderived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by intracerebral injection into NPC mice. Results: Transplantation of iNSCs showed positive results in survival and body weight change in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior test results. Furthermore, through magnetic resonance imaging and histopathological assessments, we observed delayed neurodegeneration in NPC mouse brains. Conclusions: iNSCs converted from patient-derived fibroblasts can become another choice of treatment for neurodegenerative diseases such as NPC.

Keywords

Acknowledgement

We would like to thank the Animal Research and Molecular Imaging Center of Samsung Medical Center for participation in this study.

References

  1. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5(1):16. https://doi.org/10.1186/1750-1172-5-16
  2. Wassif CA, Cross JL, Iben J, Sanchez-Pulido L, Cougnoux A, Platt FM, Ory DS, Ponting CP, Bailey-Wilson JE, Biesecker LG, Porter FD. High incidence of unrecognized visceral/neurological late-onset Niemann-Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet Med. 2016;18(1):41-48. https://doi.org/10.1038/gim.2015.25
  3. Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis. 2018;13(1):140. https://doi.org/10.1186/s13023-018-0844-0
  4. Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis. 2015;38(1):187-199. https://doi.org/10.1007/s10545-014-9794-4
  5. Geberhiwot T, Moro A, Dardis A, Ramaswami U, Sirrs S, Marfa MP, Vanier MT, Walterfang M, Bolton S, Dawson C, Heron B, Stampfer M, Imrie J, Hendriksz C, Gissen P, Crushell E, Coll MJ, Nadjar Y, Klunemann H, Mengel E, Hrebicek M, Jones SA, Ory D, Bembi B, Patterson MInternational Niemann-Pick Disease Registry (INPDR). Consensus clinical management guidelines for Niemann-Pick disease type C. Orphanet J Rare Dis. 2018;13(1):50. https://doi.org/10.1186/s13023-018-0785-7
  6. Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 2017;8(10):e3108. https://doi.org/10.1038/cddis.2017.504
  7. Choi KA, Hong S. Induced neural stem cells as a means of treatment in Huntington's disease. Expert Opin Biol Ther. 2017;17(11):1333-1343. https://doi.org/10.1080/14712598.2017.1365133
  8. Choi KA, Choi Y, Hong S. Stem cell transplantation for Huntington's diseases. Methods. 2018;133:104-112. https://doi.org/10.1016/j.ymeth.2017.08.017
  9. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int. 2017;106:94-100. https://doi.org/10.1016/j.neuint.2017.02.006
  10. Goldberg NRS, Caesar J, Park A, Sedgh S, Finogenov G, Masliah E, Davis J, Blurton-Jones M. Neural stem cells rescue cognitive and motor dysfunction in a transgenic model of dementia with Lewy bodies through a BDNF-dependent mechanism. Stem Cell Reports. 2015;5(5):791-804. https://doi.org/10.1016/j.stemcr.2015.09.008
  11. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 2009;106(32):13594-13599. https://doi.org/10.1073/pnas.0901402106
  12. Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9(2):313-317. https://doi.org/10.2174/157015911795596603
  13. Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J. Therapeutic potential of induced neural stem cells for Parkinson's disease. Int J Mol Sci. 2017;18(1):224. https://doi.org/10.3390/ijms18010224
  14. Yamashita T, Liu W, Matsumura Y, Miyagi R, Zhai Y, Kusaki M, Hishikawa N, Ohta Y, Kim SM, Kwak TH, Han DW, Abe K. Novel therapeutic transplantation of induced neural stem cells for stroke. Cell Transplant. 2017;26(3):461-467. https://doi.org/10.3727/096368916X692988
  15. Hemmer K, Zhang M, van Wullen T, Sakalem M, Tapia N, Baumuratov A, Kaltschmidt C, Kaltschmidt B, Scholer HR, Zhang W, Schwamborn JC. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Reports. 2014;3(3):423-431. https://doi.org/10.1016/j.stemcr.2014.06.017
  16. Gao M, Yao H, Dong Q, Zhang Y, Yang Y, Zhang Y, Yang Z, Xu M, Xu R. Neurotrophy and immunomodulation of induced neural stem cell grafts in a mouse model of closed head injury. Stem Cell Res (Amst). 2017;23:132-142. https://doi.org/10.1016/j.scr.2017.07.015
  17. Xie C, Liu YQ, Guan YT, Zhang GX. Induced stem cells as a novel multiple sclerosis therapy. Curr Stem Cell Res Ther. 2016;11(4):313-320. https://doi.org/10.2174/1574888X10666150302110013
  18. Sung EA, Yu KR, Shin JH, Seo Y, Kim HS, Koog MG, Kang I, Kim JJ, Lee BC, Shin TH, Lee JY, Lee S, Kang TW, Choi SW, Kang KS. Generation of patient specific human neural stem cells from Niemann-Pick disease type C patient-derived fibroblasts. Oncotarget. 2017;8(49):85428-85441. https://doi.org/10.18632/oncotarget.19976
  19. Duncan T, Valenzuela M. Alzheimer's disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017;8(1):111. https://doi.org/10.1186/s13287-017-0567-5
  20. Napoli E, Borlongan CV. Cell therapy in Parkinson's disease: host brain repair machinery gets a boost from stem cell grafts. Stem Cells. 2017;35(6):1443-1445. https://doi.org/10.1002/stem.2636
  21. Fink KD, Deng P, Torrest A, Stewart H, Pollock K, Gruenloh W, Annett G, Tempkin T, Wheelock V, Nolta JA. Developing stem cell therapies for juvenile and adult-onset Huntington's disease. Regen Med. 2015;10(5):623-646. https://doi.org/10.2217/rme.15.25
  22. Singh S, Srivastava A, Srivastava P, Dhuriya YK, Pandey A, Kumar D, Rajpurohit CS. Advances in stem cell research- a ray of hope in better diagnosis and prognosis in neurodegenerative diseases. Front Mol Biosci. 2016;3:72. https://doi.org/10.3389/fmolb.2016.00072
  23. German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM. Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience. 2002;109(3):437-450. https://doi.org/10.1016/S0306-4522(01)00517-6
  24. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10(4):465-472. https://doi.org/10.1016/j.stem.2012.02.021
  25. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 2012;10(4):473-479. https://doi.org/10.1016/j.stem.2012.03.003
  26. Zhang M, Lin YH, Sun YJ, Zhu S, Zheng J, Liu K, Cao N, Li K, Huang Y, Ding S. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell. 2016;18(5):653-667. https://doi.org/10.1016/j.stem.2016.03.020
  27. Yu KR, Shin JH, Kim JJ, Koog MG, Lee JY, Choi SW, Kim HS, Seo Y, Lee S, Shin TH, Jee MK, Kim DW, Jung SJ, Shin S, Han DW, Kang KS. Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Reports. 2015;10(3):441-452. https://doi.org/10.1016/j.celrep.2014.12.038
  28. Goldman SA. Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell. 2016;18(2):174-188. https://doi.org/10.1016/j.stem.2016.01.012
  29. Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118. https://doi.org/10.1101/cshperspect.a033118
  30. Platt N, Speak AO, Colaco A, Gray J, Smith DA, Williams IM, Wallom KL, Platt FM. Immune dysfunction in Niemann-Pick disease type C. J Neurochem. 2016;136 Suppl 1:74-80. https://doi.org/10.1111/jnc.13138
  31. Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569-577. https://doi.org/10.1016/j.it.2015.08.006
  32. Baek W, Kim YS, Koh SH, Lim SW, Kim HY, Yi HJ, Kim H. Stem cell transplantation into the intraventricular space via an Ommaya reservoir in a patient with amyotrophic lateral sclerosis. J Neurosurg Sci. 2012;56(3):261-263.
  33. Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J. Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma. 2011;28(9):1951-1961. https://doi.org/10.1089/neu.2010.1413
  34. Magnitsky S, Watson DJ, Walton RM, Pickup S, Bulte JW, Wolfe JH, Poptani H. In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage. 2005;26(3):744-754. https://doi.org/10.1016/j.neuroimage.2005.02.029
  35. Wang Y, Xu F, Zhang C, Lei D, Tang Y, Xu H, Zhang Z, Lu H, Du X, Yang GY. High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain. Nanomedicine (Lond). 2011;7(6):1009-1019. https://doi.org/10.1016/j.nano.2011.03.006
  36. Pressey SN, Smith DA, Wong AM, Platt FM, Cooper JD. Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis. 2012;45(3):1086-1100. https://doi.org/10.1016/j.nbd.2011.12.027
  37. Walterfang M, Patenaude B, Abel LA, Kluenemann H, Bowman EA, Fahey MC, Desmond P, Kelso W, Velakoulis D. Subcortical volumetric reductions in adult Niemann-Pick disease type C: a cross-sectional study. AJNR Am J Neuroradiol. 2013;34(7):1334-1340. https://doi.org/10.3174/ajnr.A3356
  38. Smith D, Wallom KL, Williams IM, Jeyakumar M, Platt FM. Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis. 2009;36(2):242-251. https://doi.org/10.1016/j.nbd.2009.07.010
  39. Ahmad I, Lope-Piedrafita S, Bi X, Hicks C, Yao Y, Yu C, Chaitkin E, Howison CM, Weberg L, Trouard TP, Erickson RP. Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann-Pick C mice. J Neurosci Res. 2005;82(6):811-821. https://doi.org/10.1002/jnr.20685
  40. Cougnoux A, Drummond RA, Collar AL, Iben JR, Salman A, Westgarth H, Wassif CA, Cawley NX, Farhat NY, Ozato K, Lionakis MS, Porter FD. Microglia activation in Niemann-Pick disease, type C1 is amendable to therapeutic intervention. Hum Mol Genet. 2018;27(12):2076-2089. https://doi.org/10.1093/hmg/ddy112
  41. Baudry M, Yao Y, Simmons D, Liu J, Bi X. Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol. 2003;184(2):887-903. https://doi.org/10.1016/S0014-4886(03)00345-5
  42. Yamada A, Saji M, Ukita Y, Shinoda Y, Taniguchi M, Higaki K, Ninomiya H, Ohno K. Progressive neuronal loss in the ventral posterior lateral and medial nuclei of thalamus in Niemann-Pick disease type C mouse brain. Brain Dev. 2001;23(5):288-297. https://doi.org/10.1016/S0387-7604(01)00209-1
  43. Kim JH, Sun W, Han DW, Moon HJ, Lee J. iNSC suppress macrophage-induced inflammation by repressing COX-2. In Vitro Cell Dev Biol Anim. 2015;51(2):157-164. https://doi.org/10.1007/s11626-014-9816-4
  44. Kim JH, Lee J. Induced neural stem cells protect neuronal cells against apoptosis. Med Sci Monit. 2014;20:2759-2766. https://doi.org/10.12659/MSM.891343
  45. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry. 2010;15(12):1164-1175. https://doi.org/10.1038/mp.2009.110
  46. Wolff M, Vann SD. The cognitive thalamus as a gateway to mental representations. J Neurosci. 2019;39(1):3-14. https://doi.org/10.1523/jneurosci.0479-18.2018
  47. Bezdudnaya T, Keller A. Laterodorsal nucleus of the thalamus: a processor of somatosensory inputs. J Comp Neurol. 2008;507(6):1979-1989. https://doi.org/10.1002/cne.21664