DOI QR코드

DOI QR Code

Molecular detection and genetic diversity of bovine papillomavirus in dairy cows in Xinjiang, China

  • Meng, Qingling (College of Animal Science and Technology, Shihezi University) ;
  • Ning, Chengcheng (College of Animal Science and Technology, Shihezi University) ;
  • Wang, Lixia (College of Animal Science and Technology, Shihezi University) ;
  • Ren, Yan (College of Veterinary Medicine, Xinjiang Agricultural University) ;
  • Li, Jie (College of Animal Science and Technology, Shihezi University) ;
  • Xiao, Chencheng (College of Animal Science and Technology, Shihezi University) ;
  • Li, Yanfang (College of Animal Science and Technology, Shihezi University) ;
  • Li, Zhiyuan (College of Animal Science and Technology, Shihezi University) ;
  • He, Zhihao (College of Animal Science and Technology, Shihezi University) ;
  • Cai, Xuepeng (State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Qiao, Jun (College of Animal Science and Technology, Shihezi University)
  • 투고 : 2020.11.11
  • 심사 : 2021.04.07
  • 발행 : 2021.07.31

초록

Background: Bovine papillomatosis is a type of proliferative tumor disease of skin and mucosae caused by bovine papillomavirus (BPV). As a transboundary and emerging disease in cattle, it poses a potential threat to the dairy industry. Objectives: The aim of this study is to detect and clarify the genetic diversity of BPV circulating in dairy cows in Xinjiang, China. Methods: 122 papilloma skin lesions from 8 intensive dairy farms located in different regions of Xinjiang, China were detected by polymerase chain reaction. The genetic evolution relationships of various types of BPVs were analyzed by examining this phylogenetic tree. Results: Ten genotypes of BPV (BPV1, BPV2, BPV3, BPV6, BPV7, BPV8, BPV10, BPV11, BPV13, and BPV14) were detected and identified in dairy cows. These were the first reported detections of BPV13 and BPV14 in Xinjiang, Mixed infections were detected, and there were geographical differences in the distribution of the BPV genotypes. Notably, the BPV infection rate among young cattle (< 1-year-old) developed from the same supply of frozen sperm was higher than that of the other young cows naturally raised under the same environmental conditions. Conclusions: Genotyping based on the L1 gene of BPV showed that BPVs circulating in Xinjiang China displayed substantial genetic diversity. This study provided valuable data at the molecular epidemiology level, which is conducive to developing deep insights into the genetic diversity and pathogenic characteristics of BPVs in dairy cows.

키워드

과제정보

We thank the field staff who provided the samples for this study.

참고문헌

  1. Bocaneti F, Altamura G, Corteggio A, Velescu E, Roperto F, Borzacchiello G. Bovine papillomavirus: new insights into an old disease. Transbound Emerg Dis. 2016;63(1):14-23. https://doi.org/10.1111/tbed.12222
  2. Daudt C, Da Silva FRC, Lunardi M, Alves CBDT, Weber MN, Cibulski SP, et al. Papillomaviruses in ruminants: an update. Transbound Emerg Dis. 2018;65(5):1381-1395. https://doi.org/10.1111/tbed.12868
  3. Tomita Y, Literak I, Ogawa T, Jin Z, Shirasawa H. Complete genomes and phylogenetic positions of bovine papillomavirus type 8 and a variant type from a European bison. Virus Genes. 2007;35(2):243-249. https://doi.org/10.1007/s11262-006-0055-y
  4. Silva MA, De Albuquerque BM, Pontes NE, Coutinho LC, Leitao MC, Reis MC, et al. Detection and expression of bovine papillomavirus in blood of healthy and papillomatosis-affected cattle. Genet Mol Res. 2013;12(3):3150-3156.
  5. Batista MV, Silva MA, Pontes NE, Reis MC, Corteggio A, Castro RS, et al. Molecular epidemiology of bovine papillomatosis and the identification of a putative new virus type in Brazilian cattle. Vet J. 2013;197(2):368-373. https://doi.org/10.1016/j.tvjl.2013.01.019
  6. He Z, Meng Q, Qiao J, Peng Y, Xie K, Liu Y, et al. Mixed nipple infections caused by variant of BPV3 and a putative new subtype of BPV in cattle. Transbound Emerg Dis. 2016;63(1):e140-e143. https://doi.org/10.1111/tbed.12238
  7. Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY. Molecular epidemiology of bovine papillomatosis and identification of three genotypes in Central Iraq. Intervirology. 2017;60(4):156-164. https://doi.org/10.1159/000486594
  8. Zhu W, Yuan D, Norimine J, Gao N, Fan S, Du Y, et al. Teat papillomatosis in dairy herds: first detection of bovine papillomavirus type 10 in China. J Vet Med Sci. 2019;81(7):1063-1066. https://doi.org/10.1292/jvms.18-0449
  9. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17-27. https://doi.org/10.1016/j.virol.2004.03.033
  10. Shimakura H, Dong J, Zhu W, Chambers JK, Uchida K, Kiriki K, et al. Full genome analysis of bovine papillomavirus type 1 derived from a calf with severe cutaneous multiple papillomatosis. J Vet Med Sci. 2018;80(11):1691-1695. https://doi.org/10.1292/jvms.18-0289
  11. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70-79. https://doi.org/10.1016/j.virol.2010.02.002
  12. Lunardi M, de Camargo Tozato C, Alfieri AF, de Alcantara BK, Vilas-Boas LA, Otonel RA, et al. Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch Virol. 2016;161(6):1569-1577. https://doi.org/10.1007/s00705-016-2820-0
  13. Bauermann FV, Joshi LR, Mohr KA, Kutish GF, Meier P, Chase C, et al. A novel bovine papillomavirus type in the genus Dyokappapapillomavirus. Arch Virol. 2017;162(10):3225-3228. https://doi.org/10.1007/s00705-017-3443-9
  14. Munday JS, Thomson N, Dunowska M, Knight CG, Laurie RE, Hills S. Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14. Vet Microbiol. 2015;177(3-4):289-295. https://doi.org/10.1016/j.vetmic.2015.03.019
  15. Daudt C, da Silva FRC, Cibulski SP, Streck AF, Laurie RE, Munday JS, et al. Bovine papillomavirus 24: a novel member of the genus Xipapillomavirus detected in the Amazon region. Arch Virol. 2019;164(2):637-641. https://doi.org/10.1007/s00705-018-4092-3
  16. Crespo SEI, Lunardi M, Otonel RAA, Headley SA, Alfieri AF, Alfieri AA. Genetic characterization of a putative new type of bovine papillomavirus in the Xipapillomavirus 1 species in a Brazilian dairy herd. Virus Genes. 2019;55(5):682-687. https://doi.org/10.1007/s11262-019-01694-8
  17. Yamashita-Kawanishi N, Tsuzuki M, Kasuya F, Chang HW, Haga T. Genomic characterization of a novel bovine papillomavirus type 28. Virus Genes. 2020;56(5):594-599. https://doi.org/10.1007/s11262-020-01779-9
  18. da Silva FR, Cibulski SP, Daudt C, Weber MN, Guimaraes LL, Streck AF, et al. Novel bovine papillomavirus type discovered by rolling-circle amplification coupled with next-generation sequencing. PLoS One. 2016;11(9):e0162345. https://doi.org/10.1371/journal.pone.0162345
  19. da Silva FR, Daudt C, Cibulski SP, Weber MN, Varela AP, Mayer FQ, et al. Genome characterization of a bovine papillomavirus type 5 from cattle in the Amazon region, Brazil. Virus Genes. 2017;53(1):130-133. https://doi.org/10.1007/s11262-016-1406-y
  20. Forslund O, Antonsson A, Nordin P, Stenquist B, Goran Hansson B. A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol. 1999;80(Pt 9):2437-2443. https://doi.org/10.1099/0022-1317-80-9-2437
  21. Ogawa T, Tomita Y, Okada M, Shinozaki K, Kubonoya H, Kaiho I, et al. Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin. J Gen Virol. 2004;85(Pt 8):2191-2197. https://doi.org/10.1099/vir.0.80086-0
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
  23. Watanabe S, Shibahara T, Andoh K, Hatama S, Mase M. Production of immunogenic recombinant L1 protein of bovine papillomavirus type 9 causing teat papillomatosis. Arch Virol. 2020;165(6):1441-1444. https://doi.org/10.1007/s00705-020-04612-8
  24. Savini F, Gallina L, Alberti A, Muller M, Scagliarini A. Bovine papillomavirus type 7 in Italy: complete genomes and sequence variants. Virus Genes. 2016a;52(2):253-260. https://doi.org/10.1007/s11262-016-1298-x
  25. Van Doorslaer K, Chen Z, Bernard HU, Chan PK, DeSalle R, Dillner J, et al. ICTV virus taxonomy profle: papillomaviridae. J Gen Virol. 2018;99(8):989-990. https://doi.org/10.1099/jgv.0.001105
  26. Savini F, Mancini S, Gallina L, Donati G, Casa G, Peli A, et al. Bovine papillomatosis: first detection of bovine papillomavirus types 6, 7, 8, 10 and 12 in Italian cattle herds. Vet J. 2016b;210:82-84. https://doi.org/10.1016/j.tvjl.2016.02.003
  27. Hatama S, Nishida T, Kadota K, Uchida I, Kanno T. Bovine papillomavirus type 9 induces epithelial papillomas on the teat skin of heifers. Vet Microbiol. 2009;136(3-4):347-351. https://doi.org/10.1016/j.vetmic.2008.11.003
  28. Roperto S, Russo V, De Falco F, Taulescu M, Roperto F. Congenital papillomavirus infection in cattle: evidence for transplacental transmission. Vet Microbiol. 2019;230:95-100. https://doi.org/10.1016/j.vetmic.2019.01.019
  29. Lindsey CL, Almeida ME, Vicari CF, Carvalho C, Yaguiu A, Freitas AC, et al. Bovine papillomavirus DNA in milk, blood, urine, semen, and spermatozoa of bovine papillomavirus-infected animals. Genet Mol Res. 2009;8(1):310-318. https://doi.org/10.4238/vol8-1gmr573