DOI QR코드

DOI QR Code

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts

Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응

  • Lee, Seong Chan (Department of Chemical Engineering, Pukyong National University) ;
  • Zuo, Hao (Department of Chemical Engineering, Pukyong National University) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • Received : 2020.12.03
  • Accepted : 2020.12.27
  • Published : 2021.03.31

Abstract

Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

팜유(palm oil)와 캐슈넛 껍질액(cashew nut shell liquid, CNSL)과 같은 식물유는 한국에서 수송용 바이오-디젤 혹은 발전용 바이오-중유의 주요 원료로서 사용되고 있다. 그러나, 이들은 탄화수소의 이중결합에 의한 높은 불포화도와 더불어 카르복실산에 기인한 높은 산소의 함량으로 인하여 연료유로서의 적용 범위에 한계가 있다. 이러한 관점에서, 본 연구는 팜유와 CNSL이 1/1 v/v%으로 이루어진 혼합 바이오오일에 포함된 불포화탄화수소를 포화시키고 산소 성분을 제거하기 위한 수소화처리 반응을 단일금속촉매(Ni과 Cu)와 이원금속촉매(Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd와 Ni-Pt) 들을 적용하여 완화된 반응조건(온도 250 ~ 400 ℃, 압력 5 ~ 80 bar와 LHSV 1 h-1) 하에서 수행하였다. Ni 활성성분에 대한 귀금속과 전이금속의 첨가는 수소화반응(HYD)과 탈산소반응(HDO)의 두 반응에 대한 활성을 증가시키는 시너지 효과를 보였다. 가장 활성이 뛰어난 유망한 촉매는 Ni-Cu/��-Al2O3으로서 Ni/Cu의 원소비가 9/1 ~ 1/4의 넓은 범위에서 HYD반응과 HDO반응에 대한 전환율이 각각 90 ~ 93%와 95 ~ 99%을 보였다. 이와 같이 Ni/Cu의 원소 비율이 넓은 범위에서 일정한 촉매반응활성을 보임에 따라 전형적인 구조비민감성 반응임을 알 수 있다. 그리고, 수소화처리 반응에 의해 정제된 혼합 바이오오일은 원료 혼합 바이오오일에 비해 요오드가, 산가 및 동점도가 크게 낮아졌으며, 고위발열량은 약 10% 증가되었다.

Keywords

References

  1. Jang, E. J., Lee, M. E., Park, J. Y., Min, K. I., Yim, E. S., Ha, J. H., and Lee, B. H., "A Study on the Quality Characteristics of Feedstocks for Power Bio-Fuel Oil," J. Korean Oil Chem Soc., 32(1), 136-147 (2015). https://doi.org/10.12925/jkocs.2015.32.1.136
  2. Jiang, X., and Ellis, N., "Upgrading Bio-oil through Emulsification with Biodiesel: Mixture Production," Energy Fuels, 24(2), 1358-1364 (2010). https://doi.org/10.1021/ef9010669
  3. Rogers, K. A., and Zheng, Y., "Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights," ChemSusChem, 9(14), 1750 (2016). https://doi.org/10.1002/cssc.201600144
  4. Guzman, A., Torres, J. E., Prada, L. P., and Nunnez, M. L., "Hydroprocessing of Crude Palm Oil at Pilot Plant Scale," Catal. Today, 156(1-2), 38-43 (2010). https://doi.org/10.1016/j.cattod.2009.11.015
  5. Raghavendra, P. S. A., "A Review on CNSL Biodiesel as an Alternative Fuel for Diesel Engine," Int. J. Sci. Res., 3(7), 2028-2038 (2014).
  6. Gashaw, A., and Lakachew, A., "Production of Biodiesel from Non-edible Oil and its Properties," Int. J. Sci. Environ Technol, 3(4), 1544-1562 (2014).
  7. Bhanushali, J. T., Kainthla, I., Keri, R. S., and Nagaraja, B. M., "Catalytic Hydrogenation of Benzaldehyde for Selective Synthesis of Benzyl Alcohol: A Review," ChemistrySelect, 1(13), 3839-3853 (2016). https://doi.org/10.1002/slct.201600712
  8. Wilson, K., Lee, A. F., and Dacquin, J.-P., "Heterogeneous Catalysts for Converting Renewable Feedstocks to Fuels and Chemicals", Springer, 263-304. New York, (2012).
  9. Gong, S., Shinozaki, A., Shi, M., and Qian, E. W., "Hydrotreating of Jatropha Oil over Alumina based Catalysts," Energy Fuels, 26(4), 2394-2399 (2012). https://doi.org/10.1021/ef300047a
  10. Vlasova, E. N., Deliy, I. V., Nuzhdin, A. L., Aleksandrov, P. V., Gerasimov, E. Y., Aleshina, G. I., and Bukhtiyarova, G. A., "Catalytic Properties of CoMo/Al2O3 Sulfide Catalysts in the Hydrorefining of Straight-run Diesel Fraction Mixed with Rapeseed Oil," Kinet. Catal., 55(4), 481-491 (2014). https://doi.org/10.1134/S0023158414040144
  11. Baldauf, E., Sievers, A., and Willner, T., "Hydrodeoxygenation of Cracked Vegetable Oil using CoMo/Al2O3 and Pt/C Catalysts," Int. J. Energy Environ. Eng., 7(3), 273-287 (2016). https://doi.org/10.1007/s40095-016-0214-4
  12. Ponec, V., "Alloy Catalysts: The Concepts," Appl. Catal. A: Gen., 222(1-2), 31-45 (2001). https://doi.org/10.1016/S0926-860X(01)00828-6
  13. Gao, F., and Goodman, D. W., "Pd-Au Bimetallic Catalysts: Understanding Alloy Effects from Planar Models and (supported) Nanoparticles," Chem. Soc. Rev., 41(24), 8009-8020 (2012). https://doi.org/10.1039/c2cs35160a
  14. Vu, B. K., Song, M. B., Ahn, I. Y., Suh, Y. W., Suh, D. J., Kim, W. I., Koh, H. L., Choi, Y. G., and Shin, E. W., "Pt-Sn Alloy Phases and Coke Mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 Catalysts for Propane Dehydrogenation," Appl. Catal. A: Gen., 400(1-2), 25-33 (2011). https://doi.org/10.1016/j.apcata.2011.03.057
  15. Sachtler, W. M. H., "Chemisorption Complexes on Alloy Surfaces," Catal. Rev. Sci. Eng., 14(1), 193-210 (1976). https://doi.org/10.1080/03602457608073411
  16. Margitfalvi, J., Guczi, L., and Weiss, A. H., "Reaction of Acetylene during Hydrogenation on Pd Black Catalyst," J. Catal, 72(2), 185-198 (1981). https://doi.org/10.1016/0021-9517(81)90001-4
  17. Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., Kharel, P. R., and Boakye, E., "Hydrocarbon Bio-oil Production from Pyrolysis Bio-oil Using Non-sulfide Ni-Zn/Al2O3 Catalyst," Fuel Process. Technol., 162, 78-86 (2017). https://doi.org/10.1016/j.fuproc.2017.04.001
  18. Yu, X., Chen, J., and Ren, T., "Promotional Effect of Fe on Performance of Ni/SiO2 for Deoxygenation of Methyl Laurate as a Model Compound to Hydrocarbons," RSC Adv., 4(87), 46427-46436 (2014). https://doi.org/10.1039/C4RA07932A
  19. Cepeda, E. A., Calvo, B., Sierra, I., and Velasco, U. I., "Selective Hydrogenation of Sunflower Oil over Ni Catalysts," Korean J. Chem. Eng., 33(1), 80-89 (2016) https://doi.org/10.1007/s11814-015-0095-x
  20. Choi, J. S. A., Zacher, H., Wang, H., Olarte, M. V., Armstrong, B. L., Meyer, H. M., Soykal, I. I., and Schwartz, V., "Molybdenum Carbides, Active and In Situ Regenerable Catalysts in Hydroprocessing of Fast Pyrolysis Bio-Oil," Energy Fuels, 30(6), 5016-5026 (2016). https://doi.org/10.1021/acs.energyfuels.6b00937
  21. Agnelli, M., and Mirodatos, C., "CO Hydrogenation on Nickel-Based Catalysts: Effects of Copper Addition," J. Catal, 192(1), 204-214 (2000). https://doi.org/10.1006/jcat.2000.2828
  22. Cho, K. H., Kang, S.-E., Park, J.-H., Cho, J. H., and Shin, C.-H., "Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst," Clean Technol., 18(2), 162-169 (2012). https://doi.org/10.7464/ksct.2012.18.2.162
  23. Saw, E. T., Oemar, U., Tan, X. R., Du, Y., Borgna, A., Hidajat, K., and Kawi, S., "Bimetallic Ni-Cu Catalyst Supported on CeO2 for High-temperature Water-gas Shift Reaction: Methane Suppression Via Enhanced CO Adsorption," J. Catal, 314, 32-46 (2014). https://doi.org/10.1016/j.jcat.2014.03.015
  24. Dominguez-Barroso, M. V., Herrera, Larrubia, C., M. A., and Alemany, L. J., "Diesel Oil-like Hydrocarbon Production from Vegetable Oil in a Single Process over Pt-Ni/Al2O3 and Pd/C Combined Catalysts," Fuel Process. Technol., 148, 110-116 (2016). https://doi.org/10.1016/j.fuproc.2016.02.032
  25. Cheng, S., Wei, L., Julson, J., Muthukumarappan, K., Kharel, P. R., and Boakye, E., "Hydrocarbon Bio-oil Production from Pyrolysis Bio-oil using Non-sulfide Ni-Zn/Al2O3 Catalyst," Fuel Process. Technol., 162, 78-86 (2017). https://doi.org/10.1016/j.fuproc.2017.04.001
  26. Khromova, S. A., Smirnov, A. A., Bulavchenko, O. A., Saraev, A. A., Kaichev, V. V., Reshetnikov, S. I., and Yakovlev, V. A., "Anisole Hydrodeoxygenation over Ni-Cu Bimetallic Catalysts: The Effect of Ni/Cu Ratio on Selectivity," Appl. Catal. A: Gen., 470, 261-270 (2014). https://doi.org/10.1016/j.apcata.2013.10.046
  27. Ameen, M., Azizan, M. T., Ramli, A., Yusup, S., and Yasir, M., "Physicochemical Properties of Ni-Mo/γ-Al2O3 Catalysts Synthesized Via Sonochemical Method," Procedia Eng., 148, 64-71(2016). https://doi.org/10.1016/j.proeng.2016.06.496
  28. Yadav, G. D., and Kharkara, M. R., "Liquid-phase Hydrogenation of Saturated and Unsaturated Nitriles: Activities and Selectivities of Bimetallic Nickelcopper and Nickel-iron Catalysts Supported on Silica," Appl. Catal. A: Gen., 126(1), 115-123 (1995). https://doi.org/10.1016/0926-860X(95)00039-9
  29. Asedegbega-Nieto, E., Bachiller-Baeza, B., Guerrero-Ruiz A., and Rodriguez-Ramos, I., "Modification of Catalytic Properties over Carbon Supported Ru-Cu and Ni-Cu Bimetallics II. Paracetamol Hydrogenation and n-hexane Conversion," Appl. Catal. A: Gen., 303(1), 88-95 (2006). https://doi.org/10.1016/j.apcata.2006.01.042
  30. Satterfield, C. N., "Heterogeneous Catalysis in Industrial Practice," McGrow-Hill, New York (1984).
  31. Takeuchi, T., Sakaguchi, M., Miyoshi, I., and Takabatake, T., "Catalytic Activities of Copper-nickel Alloys for Hydrogenating Reactions," Bull. Chem. Soc. Jpn., 35(8), 1390-1394 (1962). https://doi.org/10.1246/bcsj.35.1390
  32. Van der Plank, P., and Sachtler, W. M. H., "Surface Composition of Equilibrated Copper-nickel Alloy Films," J. Catal, 7(3), 300-303 (1967). https://doi.org/10.1016/0021-9517(67)90115-7
  33. Li, M., Xinga, S., Yanga, L., Fua, J., Lva, P., Wanga, Z., and Yuan, Z., "Nickel-loaded ZSM-5 Catalysed Hydrogenation of Oleic Acid: The Game Between Acid Sites and Metal Centres," Appl. Catal. A: Gen., 587, 117112 (2019). https://doi.org/10.1016/j.apcata.2019.117112