DOI QR코드

DOI QR Code

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba (Department of Audiology, Faculty of Health and Science, Istanbul Medipol University) ;
  • Serbetcioglu, Mustafa Bulent (Department of Audiology, Faculty of Health and Science, Istanbul Medipol University) ;
  • Ersin, Kerem (Department of Audiology, Faculty of Health and Science, Istanbul Medipol University) ;
  • Yilmaz, Oguz (Department of Audiology, Faculty of Health and Science, Istanbul Medipol University)
  • 투고 : 2021.02.10
  • 심사 : 2021.04.24
  • 발행 : 2021.07.20

초록

Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

키워드

과제정보

We would like to thank participants for their patience and invaluable contribution to this study.

참고문헌

  1. Dickman JD. Chapter 22 - The vestibular system. In: Fundamental Neuroscience for Basic and Clinical Applications (eds. Haines DE, Mihailoff GA), 5th ed. Philadelphia: Elsevier Inc.;2018. p.320-33.
  2. Gregory R. What are illusions? Perception 1996;25:503-4. https://doi.org/10.1068/p250503
  3. Rosengren SM, Kingma H. New perspectives on vestibular evoked myogenic potentials. Curr Opin Neurol 2013;26:74-80. https://doi.org/10.1097/WCO.0b013e32835c5ef3
  4. Alhabib SF, Saliba I. Video head impulse test: a review of the literature. Eur Arch Otorhinolaryngol 2017;274:1215-22. https://doi.org/10.1007/s00405-016-4157-4
  5. Apthorp D, Nagle F, Palmisano S. Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion. PLoS One 2014;9:e113897. https://doi.org/10.1371/journal.pone.0113897
  6. Stanney KM, Kennedy RS, Drexler JM. Cybersickness is not simulator sickness. Proc Hum Factors Ergon Soc Annu Meet 1997;41:1138-42. https://doi.org/10.1177/107118139704100292
  7. Akiduki H, Nishiike S, Watanabe H, Matsuoka K, Kubo T, Takeda N. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett 2003;340:197-200. https://doi.org/10.1016/S0304-3940(03)00098-3
  8. Stein BE, London N, Wilkinson LK, Price DD. Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis. J Cogn Neurosci 1996;8:497-506. https://doi.org/10.1162/jocn.1996.8.6.497
  9. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002;415:429-33. https://doi.org/10.1038/415429a
  10. Kovacs G, Raabe M, Greenlee MW. Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 2008;18:1779-87. https://doi.org/10.1093/cercor/bhm203
  11. Brandt T, Bartenstein P, Janek A, Dieterich M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 1998;121:1749-58. https://doi.org/10.1093/brain/121.9.1749
  12. Stanney KM, Kennedy RS. Aftereffects from virtual environment exposure: how long do they last? Proc Hum Factors Ergon Soc Annu Meet 1998;42:1476-80. https://doi.org/10.1177/154193129804202103
  13. Weech S, Troje NF. Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation. Multisens Res 2017;30:65-90. https://doi.org/10.1163/22134808-00002545
  14. Bronstein AM. Multisensory integration in balance control. Handb Clin Neurol 2016;137:57-66. https://doi.org/10.1016/B978-0-444-63437-5.00004-2
  15. Peterka RJ. Sensory integration for human balance control. Handb Clin Neurol 2018;159:27-42. https://doi.org/10.1016/B978-0-444-63916-5.00002-1
  16. Di Girolamo S, Picciotti P, Sergi B, Di Nardo W, Paludetti G, Ottaviani F. Vestibulo-ocular reflex modification after virtual environment exposure. Acta Otolaryngol 2001;121:211-5. https://doi.org/10.1080/000164801300043541
  17. Harris LR, Jenkin M, Zikovitz DC. Visual and non-visual cues in the perception of linear self-motion. Exp Brain Res 2000;135:12-21. https://doi.org/10.1007/s002210000504
  18. Akizuki H, Uno A, Arai K, Morioka S, Ohyama S, Nishiike S, et al. Effects of immersion in virtual reality on postural control. Neurosci Lett 2005;379:23-6. https://doi.org/10.1016/j.neulet.2004.12.041
  19. ter Horst AC, Koppen M, Selen LP, Medendorp WP. Reliability-based weighting of visual and vestibular cues in displacement estimation. PLoS One 2015;10:e0145015. https://doi.org/10.1371/journal.pone.0145015
  20. Holt JC, Lysakowski A, Goldberg JM. The efferent vestibular system. In: Auditory and Vestibular Efferents (eds. Ryugo D, Fay RR, Popper AN). New York: Springer;2011. p.135-86.
  21. Cheng Z, Gu Y. Vestibular system and self-motion. Front Cell Neurosci 2018;12:456. https://doi.org/10.3389/fncel.2018.00456
  22. Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 2003;60:511-41. https://doi.org/10.1016/S0361-9230(03)00055-8
  23. Tomlinson RD, Robinson DA. Signals in vestibular nucleus mediating vertical eye movements in the monkey. J Neurophysiol 1984;51:1121-36. https://doi.org/10.1152/jn.1984.51.6.1121
  24. Gallagher M, Dowsett R, Ferre ER. Vection in virtual reality modulates vestibular-evoked myogenic potentials. Eur J Neurosci 2019;50:3557-65. https://doi.org/10.1111/ejn.14499
  25. Fowler CG, Sweet A, Steffel E. Effects of motion sickness severity on the vestibular-evoked myogenic potentials. J Am Acad Audiol 2014;25:814-22. https://doi.org/10.3766/jaaa.25.9.4
  26. Clarke AH, Schonfeld U. Modification of unilateral otolith responses following spaceflight. Exp Brain Res 2015;233:3613-24. https://doi.org/10.1007/s00221-015-4428-0
  27. Swathi VM, Sathish KK. Influence of dance training on sacculocollic pathway: vestibular evoked myogenic potentials (VEMP) as an objective tool. J Evol Med Dent Sci 2013;2:7747-54. https://doi.org/10.14260/jemds/1368
  28. Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P, et al. Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 2003;13:994-1007. https://doi.org/10.1093/cercor/13.9.994
  29. Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M. Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage 2008;39:19-31. https://doi.org/10.1016/j.neuroimage.2007.08.016
  30. Clement G, Reschke MF. Relationship between motion sickness susceptibility and vestibulo-ocular reflex gain and phase. J Vestib Res 2018;28:295-304. https://doi.org/10.3233/ves-180632