DOI QR코드

DOI QR Code

Detection of blaKPC and blaNDM Genes from Gram-Negative Rod Bacteria Isolated from a General Hospital in Gyeongnam

경남지역 종합병원에서 분리된 그람음성막대균으로부터 blaKPC 및 blaNDM 유전자 검출

  • Yang, Byoung Seon (Department of Medical Laboratory Science, Jinju Health College) ;
  • Park, Ji Ae (Department of Medical Laboratory Science, Jinju Health College)
  • 양병선 (진주보건대학교 임상병리과) ;
  • 박지애 (진주보건대학교 임상병리과)
  • Received : 2021.01.28
  • Accepted : 2021.02.28
  • Published : 2021.03.31

Abstract

This study investigated the use of real-time PCR melting curves for the diagnosis of blaKPC and blaNDM genes among the most frequently detected carbapenemase-producing Enterobacteriaceae in Korea. As a means of addressing the shortcomings of phenotype tests and conventional PCR. The modified Hodge test confirmed positivity in 25 of 35 strains, and carbapenemase inhibition testing confirmed positivity in 14 strains by meropenem+PBA or meropenem+EDTA. PCR analysis showed amplification products in 25 strains of Klebsiella pneumoniae carbapenemases (KPC), 10 of K. pneumoniae, 5 of E. coli, 5 of A. baumannii, 4 of P. aeruginosa, and 1 of P. putida. New Delhi metallo β-lactamase (NDM) identified amplification products in 8 strains, that is, 2 K. pneumoniae, 3 E. coli, 1 P. aeruginosa, 1 E. cloacae, and 1 P. retgeri strains. Real-time PCR melting curve analysis confirmed amplification in 25 strains of KPC and 8 strains of NDM, and these results were 100% consistent with PCR results. In conclusion, our findings suggest early diagnosis of carbapenem resistant Enterobacteriaceae by real-time PCR offers a potential means of antibacterial management that can prevent and control nosocomial infection spread.

본 연구는 국내에서 가장 빈번히 검출되는 CPE의 유전자형 중 blaKPC 및 blaNDM 유전자의 진단으로 기존의 표현형 검사 및 일반 PCR 검사보다 시간 단축 및 사후 분석의 단점이 보완된 real-time PCR의 융해 곡선을 이용한 분석법에 대해 알아보았다. 표현형적 검사결과 MHT는 35균주 중 25균주에서 양성을 확인하고, CIT는 meropenem+PBA 및 meropenem+EDTA에서 각각 14균주의 양성을 확인하였다. PCR 검사결과 KPC 25균주에서 증폭 산물을 확인하였고, K. pneumoniae 10균주, E. coli 5균주, A. baumannii 5균주, P. aeruginosa 4균주, P. putida 1균주로 나타났다. NDM은 8균주에서 증폭 산물을 확인하였고, K. pneumoniae 2균주, E. coli 3균주, P. aeruginosa 1균주, E. cloacae 1균주, P. rettgeri 1균주로 나타났다. 실시간 중합효소연쇄반응(Real-time PCR)을 이용한 융해 곡선 분석결과 KPC 25균주, NDM은 8균주에서 증폭을 확인하였고, PCR 결과와 100% 일치함을 확인하였다. 결론적으로 real-time PCR을 이용한 신속하고 특이성이 높은 CRE의 조기진단은 공중보건 및 감염 중에 항균 관리접근법을 통한 병원 내 감염확산 방지 및 통제가 가능할 것으로 사료된다.

Keywords

References

  1. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37:1288-1301. https://doi.org/10.1017/ice.2016.174
  2. Bedenic B, Plecko V, Sardelic S, Uzunovic S, Godic Torkar K. Carbapenemases in gram-negative bacteria: laboratory detection and clinical significance. BioMed Research International. 2014;841951. https://doi.org/10.1155/2014/841951
  3. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrobial Agents and Chemotherapy. 2011;55:4943-4960. https://doi.org//AAC.00296-11 https://doi.org/10.1128/AAC.00296-11
  4. Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in gram-negative bacilli: Enterobacteriaceae, Pseudomonas, and Acinetobacter species. Clinical Microbiology and Infection. 2014;20:831-838. https://doi.org/10.1111/1469-0691.12655
  5. Rhee JY, Park YK, Shin JY, Choi JY, Lee MY, Peck KR, et al. KPC producing extreme drug-resistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother. 2010;54:2278-2279. https://doi.org/10.1128/AAC.00011-10
  6. Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn. ZMicrobiol. Infect. Dis. 2017;87:343-348. https://doi.org/j.diagmicrobio.2016.12.012 https://doi.org/10.1016/j.diagmicrobio.2016.12.012
  7. Jeong SH, Kim HS, Kim JS, Shin DH, Kim HS, Park MJ, et al. Prevalence and molecular characteristics of carbapenemase producing Enterobacteriaceae from five hospitals in Korea. Ann. Lab. Med. 2016;36:529-535. https://doi.org/10.3343/alm.2016.36.6.529
  8. Park SH, Kim JS, Kim HS, Yu YK, Han SH, Kang MJ, et. al. Prevalence of carbapenem-resistant Enterobacteriaceae in Seoul. J Bacteriol Virol. 2020;50:107-116. https://doi.org/10.4167/jbv.2020.50.2.107
  9. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318-327. https://doi.org/10.1016/S1473-3099(17)30753-3
  10. Lodise TP, Zhao Q, Fahrbach K, Gillard PJ, Martin A. A systematic review of the association between delayed appropriate therapy and mortality among patients hospitalized with infections due to Klebsiella pneumoniae or Escherichia coli: how long is too long? BMC Infect Dis. 2018;18:625. https://doi.org/10.1186/s12879-018-3524-8
  11. Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-S27. Wayne PA: Clinical Laboratory Standards Institute; 2017.
  12. Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes 2014;7:557. https://doi.org/10.1186/1756-0500-7-557
  13. Cha CH, Hae Kyong An HK, Kim JU. Detection of vancomycin-resistant Enterococci using multiplex real-time PCR assay and melting curve analysis. Korean J Lab Med. 2010;30:138-146. https://doi.org/10.3343/kjlm.2010.30.2.138
  14. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997;245:154-60. https://doi.org/10.1006/abio.1996.9916
  15. Zheng F, Sun J, Cheng C, Rui Y. The establishment of a duplex real-time PCR assay for rapid and simultaneous detection of blaNDM and blaKPC genes in bacteria. Ann Clin Microbiol Antimicrob. 2013;12:30. https://doi.org/10.1186/1476-0711-12-30
  16. Lodise TP, Bonine NG, Ye JM, Folse HJ, Gillard P. Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections. BMC Infectious Diseases. 2019;19:718. https://doi.org/10.1186/s12879-019-4363-y
  17. Bonine NG, Berger A, Altincatal A, Wang R, Bhagnani T, Gillard P, et al. Impact of delayed appropriate antibiotic therapy on patient outcomes by antibiotic resistance status from serious gram-negative bacterial infections. Am J Med Sci. 2019;357:103-110. https://doi.org/10.1016/j.amjms.2018.11.009
  18. The Korean Society of Clinical Microbiology. Diagnostic instruction carbapenemase producing Enterobacteriaceae (CPE) [Internet]. Seoul: The Korean Society of Clinical Microbiology; 2015 [cited 2021 February 9]. Available from: http://kscm.or.kr/xe/kscmnotice/71241.
  19. Monteiro J, Widen RH, Pignatari ACC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012;67:906-909. https://doi.org/10.1093/jac/dkr563
  20. Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-Producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother. 2011;55:934-936. https://doi.org/10.1128/AAC.01247-10
  21. Wang L, Gu H, Lu X. A rapid low-cost real-time PCR for the detection of Klebsiella pneumonia carbapenemase genes. Ann Clin Microbiol Antimicrob. 2012;11:9. https://doi.org/10.1186/1476-0711-11-9
  22. Kosykowska E, Dzieciatkowski T, Mlynarczyk G. Rapid detection of NDM, VIM, KPC and IMP carbapenemases by real-time PCR. J Bacteriol Parasitol. 2016;7:6. https://doi.org/10.4172/2155-9597.1000299
  23. Ahn SY, Sung JY, Kim HS, Kim MS, Hwang YJ, Jong SR, et al. Molecular epidemiology and characterization of carbapenemase-producing Enterobacteriaceae isolated at a university hospital in Korea during 4-year period. Ann Clin Microbiol. 2016;19:39-47. https://doi.org/10.5145/ACM.2016.19.2.39
  24. Park JW, Lee EJ, et al. Status of carbapenemase producing Enterobacteriaceae incidences in Korea, 2015-2016. Research report. Cheongju: Korea Centers for Disease Control and Prevention; 2017;10:1243-1247.
  25. Wang P, Chen S, Guo Y, Xiong Z, Hu F, Zhu D, et al. Occurrence of false positive results for the detection of carbapenemases in carbapenemasenegative Escherichia coli and Klebsiella pneumoniae isolates. PLoS One. 2011;6:e26356. https://doi.org/10.1371/journal.pone.0026356
  26. Carvalhaes CG, Picao RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2010;65:249-251. https://doi.org/10.1093/jac/dkp431
  27. Seah C, Low DE, Patel SN, Melano RG. Comparative evaluation of a chromogenic agar medium, the modified Hodge test, and a battery of meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J Clin Microbiol. 2011;49:1965-1969. https://doi.org/10.1128/JCM.00203-11
  28. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18:432-438. https://doi.org/10.1111/j.1469-0691.2012.03815.x
  29. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol. 2009;47:1631-1639. https://doi.org/10.1128/JCM.00130-09
  30. Samuelsen O, Buaro L, Giske CG, Simonsen GS, Aasnaes B, Sundsfjord A. Evaluation of phenotypic tests for the detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a low prevalence country. J Antimicrob Chemother. 2008;61:827-830. https://doi.org/10.1093/jac/dkn016
  31. Chu YW, Cheung TK, Ngan JY, Kam KM. EDTA susceptibility leading to false detection of metallo-beta-lactamase in Pseudomonas aeruginosa by Etest and an imipenem-EDTA disk method. Int J Antimicrob Agents 2005;26:340-341. https://doi.org/10.1016/j.ijantimicag.2005.07.004
  32. Ratkai C, Quinteira S, Grosso F, Monteiro N, Nagy E, Peixe L. Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-beta-lactamases. J Antimicrob Chemother 2009;64:657-658. https://doi.org/10.1093/jac/dkp229
  33. Bonnin RA, Naas T, Poirel L, Nordmann P. Phenotypic, biochemical, and molecular techniques for detection of metallo-β-lactamase NDM in Acinetobacter baumannii. J Clin Microbiol. 2012;50:1419-1421. https://doi.org/10.1128/JCM.06276-11
  34. Hansen F, Hammerum AM, Skov R, Haldorsen B, Sundsfjord A, Samuelsen O. Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn Microbiol Infect Dis. 2014;79:486-488. https://doi.org/10.1016/j.diagmicrobio.2013.12.001
  35. Goudarzi H, Mirsamadi ES, Ghalavand Z, Hakemi Vala M, Mirjalali H, Hashemi A. Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BMC Microbiology. 2019;19:122. https://doi.org/10.1186/s12866-019-1510-y
  36. Lodise TP, Bonine NG, Ye JM, Folse HJ, Gillard P. Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections. BMC Infectious Diseases. 2019;19:718. https://doi.org/10.1186/s12879-019-4363-y
  37. Mangold KA, Santiano K, Broekman R, Krafft CA, Voss B, Wang V, et al. Real-time detection of blaKPC in clinical samples and surveillance specimens. J Clin Microbiol. 2011;49:3338-3339. https://doi.org/10.1128/JCM.00268-11