References
- Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37:1288-1301. https://doi.org/10.1017/ice.2016.174
- Bedenic B, Plecko V, Sardelic S, Uzunovic S, Godic Torkar K. Carbapenemases in gram-negative bacteria: laboratory detection and clinical significance. BioMed Research International. 2014;841951. https://doi.org/10.1155/2014/841951
- Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrobial Agents and Chemotherapy. 2011;55:4943-4960. https://doi.org//AAC.00296-11 https://doi.org/10.1128/AAC.00296-11
- Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in gram-negative bacilli: Enterobacteriaceae, Pseudomonas, and Acinetobacter species. Clinical Microbiology and Infection. 2014;20:831-838. https://doi.org/10.1111/1469-0691.12655
- Rhee JY, Park YK, Shin JY, Choi JY, Lee MY, Peck KR, et al. KPC producing extreme drug-resistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother. 2010;54:2278-2279. https://doi.org/10.1128/AAC.00011-10
- Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn. ZMicrobiol. Infect. Dis. 2017;87:343-348. https://doi.org/j.diagmicrobio.2016.12.012 https://doi.org/10.1016/j.diagmicrobio.2016.12.012
- Jeong SH, Kim HS, Kim JS, Shin DH, Kim HS, Park MJ, et al. Prevalence and molecular characteristics of carbapenemase producing Enterobacteriaceae from five hospitals in Korea. Ann. Lab. Med. 2016;36:529-535. https://doi.org/10.3343/alm.2016.36.6.529
- Park SH, Kim JS, Kim HS, Yu YK, Han SH, Kang MJ, et. al. Prevalence of carbapenem-resistant Enterobacteriaceae in Seoul. J Bacteriol Virol. 2020;50:107-116. https://doi.org/10.4167/jbv.2020.50.2.107
- Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318-327. https://doi.org/10.1016/S1473-3099(17)30753-3
- Lodise TP, Zhao Q, Fahrbach K, Gillard PJ, Martin A. A systematic review of the association between delayed appropriate therapy and mortality among patients hospitalized with infections due to Klebsiella pneumoniae or Escherichia coli: how long is too long? BMC Infect Dis. 2018;18:625. https://doi.org/10.1186/s12879-018-3524-8
- Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-S27. Wayne PA: Clinical Laboratory Standards Institute; 2017.
- Bora A, Sanjana R, Jha BK, Mahaseth SN, Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes 2014;7:557. https://doi.org/10.1186/1756-0500-7-557
- Cha CH, Hae Kyong An HK, Kim JU. Detection of vancomycin-resistant Enterococci using multiplex real-time PCR assay and melting curve analysis. Korean J Lab Med. 2010;30:138-146. https://doi.org/10.3343/kjlm.2010.30.2.138
- Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997;245:154-60. https://doi.org/10.1006/abio.1996.9916
- Zheng F, Sun J, Cheng C, Rui Y. The establishment of a duplex real-time PCR assay for rapid and simultaneous detection of blaNDM and blaKPC genes in bacteria. Ann Clin Microbiol Antimicrob. 2013;12:30. https://doi.org/10.1186/1476-0711-12-30
- Lodise TP, Bonine NG, Ye JM, Folse HJ, Gillard P. Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections. BMC Infectious Diseases. 2019;19:718. https://doi.org/10.1186/s12879-019-4363-y
- Bonine NG, Berger A, Altincatal A, Wang R, Bhagnani T, Gillard P, et al. Impact of delayed appropriate antibiotic therapy on patient outcomes by antibiotic resistance status from serious gram-negative bacterial infections. Am J Med Sci. 2019;357:103-110. https://doi.org/10.1016/j.amjms.2018.11.009
- The Korean Society of Clinical Microbiology. Diagnostic instruction carbapenemase producing Enterobacteriaceae (CPE) [Internet]. Seoul: The Korean Society of Clinical Microbiology; 2015 [cited 2021 February 9]. Available from: http://kscm.or.kr/xe/kscmnotice/71241.
- Monteiro J, Widen RH, Pignatari ACC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012;67:906-909. https://doi.org/10.1093/jac/dkr563
- Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-Producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother. 2011;55:934-936. https://doi.org/10.1128/AAC.01247-10
- Wang L, Gu H, Lu X. A rapid low-cost real-time PCR for the detection of Klebsiella pneumonia carbapenemase genes. Ann Clin Microbiol Antimicrob. 2012;11:9. https://doi.org/10.1186/1476-0711-11-9
- Kosykowska E, Dzieciatkowski T, Mlynarczyk G. Rapid detection of NDM, VIM, KPC and IMP carbapenemases by real-time PCR. J Bacteriol Parasitol. 2016;7:6. https://doi.org/10.4172/2155-9597.1000299
- Ahn SY, Sung JY, Kim HS, Kim MS, Hwang YJ, Jong SR, et al. Molecular epidemiology and characterization of carbapenemase-producing Enterobacteriaceae isolated at a university hospital in Korea during 4-year period. Ann Clin Microbiol. 2016;19:39-47. https://doi.org/10.5145/ACM.2016.19.2.39
- Park JW, Lee EJ, et al. Status of carbapenemase producing Enterobacteriaceae incidences in Korea, 2015-2016. Research report. Cheongju: Korea Centers for Disease Control and Prevention; 2017;10:1243-1247.
- Wang P, Chen S, Guo Y, Xiong Z, Hu F, Zhu D, et al. Occurrence of false positive results for the detection of carbapenemases in carbapenemasenegative Escherichia coli and Klebsiella pneumoniae isolates. PLoS One. 2011;6:e26356. https://doi.org/10.1371/journal.pone.0026356
- Carvalhaes CG, Picao RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2010;65:249-251. https://doi.org/10.1093/jac/dkp431
- Seah C, Low DE, Patel SN, Melano RG. Comparative evaluation of a chromogenic agar medium, the modified Hodge test, and a battery of meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J Clin Microbiol. 2011;49:1965-1969. https://doi.org/10.1128/JCM.00203-11
- Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18:432-438. https://doi.org/10.1111/j.1469-0691.2012.03815.x
- Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol. 2009;47:1631-1639. https://doi.org/10.1128/JCM.00130-09
- Samuelsen O, Buaro L, Giske CG, Simonsen GS, Aasnaes B, Sundsfjord A. Evaluation of phenotypic tests for the detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a low prevalence country. J Antimicrob Chemother. 2008;61:827-830. https://doi.org/10.1093/jac/dkn016
- Chu YW, Cheung TK, Ngan JY, Kam KM. EDTA susceptibility leading to false detection of metallo-beta-lactamase in Pseudomonas aeruginosa by Etest and an imipenem-EDTA disk method. Int J Antimicrob Agents 2005;26:340-341. https://doi.org/10.1016/j.ijantimicag.2005.07.004
- Ratkai C, Quinteira S, Grosso F, Monteiro N, Nagy E, Peixe L. Controlling for false positives: interpreting MBL Etest and MBL combined disc test for the detection of metallo-beta-lactamases. J Antimicrob Chemother 2009;64:657-658. https://doi.org/10.1093/jac/dkp229
- Bonnin RA, Naas T, Poirel L, Nordmann P. Phenotypic, biochemical, and molecular techniques for detection of metallo-β-lactamase NDM in Acinetobacter baumannii. J Clin Microbiol. 2012;50:1419-1421. https://doi.org/10.1128/JCM.06276-11
- Hansen F, Hammerum AM, Skov R, Haldorsen B, Sundsfjord A, Samuelsen O. Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn Microbiol Infect Dis. 2014;79:486-488. https://doi.org/10.1016/j.diagmicrobio.2013.12.001
- Goudarzi H, Mirsamadi ES, Ghalavand Z, Hakemi Vala M, Mirjalali H, Hashemi A. Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BMC Microbiology. 2019;19:122. https://doi.org/10.1186/s12866-019-1510-y
- Lodise TP, Bonine NG, Ye JM, Folse HJ, Gillard P. Development of a bedside tool to predict the probability of drug-resistant pathogens among hospitalized adult patients with gram-negative infections. BMC Infectious Diseases. 2019;19:718. https://doi.org/10.1186/s12879-019-4363-y
- Mangold KA, Santiano K, Broekman R, Krafft CA, Voss B, Wang V, et al. Real-time detection of blaKPC in clinical samples and surveillance specimens. J Clin Microbiol. 2011;49:3338-3339. https://doi.org/10.1128/JCM.00268-11