DOI QR코드

DOI QR Code

A Study on the Possibility of Utilizing Artificial Intelligence for National Crisis Management: Focusing on the Management of Artificial Intelligence and R&D Cases

국가위기관리를 위한 인공지능 활용 가능성에 관한 고찰: 인공지능 운용과 연구개발 사례를 중심으로

  • Choi, Won-sang (Department of Military Affairs, General Graduate School, Chungnam National University)
  • 최원상 (충남대학교 일반대학원 군사학과)
  • Received : 2021.01.10
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

Modern society is exposed to various types of crises. In particular, since the September 11 attacks, each country has been increasingly responsible for managing non-military crises. Therefore, the purpose of this study is to consider ways to utilize artificial intelligence(AI) for national crisis management in the era of the fourth industrial revolution. To this end, we analyzed the effectiveness of artificial intelligence(AI) operated and under research and development(R&D) to support human decision-making and examined the possibility of using artificial intelligence(AI) to national crisis management. As a result of the study, artificial intelligence(AI) provides objective judgment of the data-based situation and optimal countermeasures to policymakers, enabling them to make decisions in urgent crisis situations, indicating that it is efficient to use artificial intelligence(AI) for national crisis. These findings suggest the possibility of using artificial intelligence(AI) to respond quickly and efficiently to the national crisis.

현대사회는 다양한 형태의 위기에 노출되어 있다. 특히, 9·11테러 이후로 각 국가는 비군사적 위기에 대한 관리의 비중이 점차 커지고 있다. 이에 본 연구에서는 제4차 산업혁명시대에서 국가위기관리를 위해 인공지능(AI)을 활용하는 방안에 관한 고찰을 목적으로 한다. 이를 위해 인간의 의사결정을 지원해주기 위해 운용되고 연구개발(R&D) 중인 인공지능(AI)의 실효성을 분석하여 인공지능(AI)을 국가위기관리에 활용 가능성을 살펴보았다. 연구결과, 인공지능(AI)은 데이터에 근거한 객관적인 상황 판단과 최적의 대응 방안을 정책결정권자에게 제시해주어 급박한 위기 상황에서 정책결정권자의 결정행위를 지원해주는 것이 가능하여 인공지능(AI)을 국가위기관리에 활용하는 것이 효율적임을 알 수 있었다. 이러한 연구결과는 신속하고 효율적인 국가위기 대응을 위해 인공지능(AI) 활용의 가능성을 제시해 준다.

Keywords

References

  1. Hans J. Morgenthau. (1973). Politics among Nations: The Struggle for Power and Peace. New York: Alfred A. Knoff, 246.
  2. Kenneth N. Waltz. (1993). The Emerging Structure of International Politic. International Security, 18(2), 45-73.
  3. Richard N. Hass. (1995). Paradigm Lost. Foreign Affairs, 74(1), 43-58. https://doi.org/10.2307/20047018
  4. Jin Shin. (2000). The Defense Policy and Security of Korea. Korean Journal of International Relations, 40(2), 125.
  5. B. O. Kil & T. H. Huh. (2003). A Study on the Establishment Schemes of the National Crisis Management System and Its Program Development. Korean Journal of International Relations, 43(1), 339-359.
  6. H. K. Lee. (2013). An Approach to Establish the National Integrated Crisis Management System. Doctoral dissertation. Daejin University. Pocheon. 275-276.
  7. S. S. Lee. (2014). Construction of the effective linking wartime and peacetime national emergency management system. Doctoral dissertation. Kyounggi University. Suwon. 146-163.
  8. J. H. Mok, Y. H. Choi & S. H. Myoung. (1998). The Impact of Information Technology in Policy Making Process : The Case of Korean Local Governments. Korean Public Administration Review, 32(3), 247-261.
  9. H. J. Seo. (2019). A Preliminary Discussion on Policy Decision Making of AI in The Fourth Industrial Revolution. Informatization Policy, 26(3), 3-30. DOI: 10.22693/NIAIP.2019.26.3.003
  10. G. H. Van Bruggen, A. Smidts & B. Wierenga.(1998). Improving Decision Making by Means of a Marketing Decision Support System. Management Science, 44(5), 645-658. https://doi.org/10.1287/mnsc.44.5.645
  11. R. Rupnik, M. Kukar & M. Krsper. (2007). Integrating Data Mining and Decision Support Through Data Mining Based Decision Support System. The Journal of Computer Information Systems, 47(3), 89-104.
  12. Simon, H. A. (1973). Applying Information Technology to Organizational Design. Public Administration Review, 33(3), 268-287. https://doi.org/10.2307/974804
  13. Teng, T. C. James & K. J. Calhoun. (1996). Organizational Computing as a Facilitator o Operational and Managerial Decision Making: An Exploratory Study of Managers' Perception. Decision Sciences, 27(4), 673-710. https://doi.org/10.1111/j.1540-5915.1996.tb00869.x
  14. G. DeSanctis & R. B. Gallupe. (1987). A Foundation for the Study of Group Decision Support Systems. Management Science, 33(5), 589-609. https://doi.org/10.1287/mnsc.33.5.589
  15. S. Molloy & C. R. Schwenk. (1995). The Effects of Information Technology on Strategic Decision Making. Journal of Management Studies, 32, 283-312. https://doi.org/10.1111/j.1467-6486.1995.tb00777.x
  16. S. H. Myoung. (1997). The Impacts of Information Technologies on Managerial Tasks. The Korea Association for Policy Studies, 6(1), 72-100.
  17. M. D. Robbins, B. Simonsen & B. Feldmanm. (2008). Citizens and resource allocation: Improving decision making with interactive web-based citizen participation. Public Administration Review, 68(3), 564-575. https://doi.org/10.1111/j.1540-6210.2008.00891.x
  18. Y. K. Young, J. H. Jung, W. R. Chae, K. H. Lee & J. Y. Lee. (2020). A Study On Technical Trend Analysis Related to Semantic Analysis of NLP Through Domestic/Foreign Patent Data. Journal of Digital Convergence, 18(1), 138. DOI: 10.14400/JDC.2020.18.1.137
  19. H. J. Han, K. J. Kim & H. S. Kwon. (2020). The Analysis of Elementary School Teachers' Perception of Using Artificial Intelligence in Education. Journal of Digital Convergence, 18(7), 48. DOI: 10.14400/JDC.2020.18.7.047
  20. Yin, R. K. (2003). Case Study Research : Design and Method (3rd ed.). Thousand Oaks, CA: Sage.
  21. Guba E. & Lincoln Y. (1981). Effective evaluation. San Francisco CA: Jossey Bass.
  22. Stake R. The Art of Case Study Research. (1995). Thousand Oaks, CA: Sage.
  23. D. U. Lee. (2017, May). Fourth Industrial Revolution and Healthcare? With the introduction of Watson at Gil Medical Center. Korean Association Of Science And Technology Studies Conference, (pp. 198-199).
  24. D. G. Lee & S. H. Lee. (2016). Smart Machine Examples - IBM Watson. Korea Institute of Information Technology Magazine, 14(2), 29-30.
  25. K. A. Lee, C. H. Chan, J. H. Baek, S. J. Shin, S. M. An, H. K. An, U. Lee & S. H. Lee. (2019). Concordance Assessment and Medical Staff Satisfaction of the AI Watson. J Health Tech Assess, 7(2), 113.
  26. J. Y. Park. (2016). Exobrain wins...Will humans ever be able to beat AI?. YNA. https://www.yna.co.kr/view/AKR20161119031500063?input=1195m
  27. Y. S. Jeong. (2020). Probability-based Deep Learning Clustering Model for the Collection of IoT Information, Korean Journal of International Relations, 18(3), 190. DOI: 10.14400/JDC.2020.18.3.189
  28. J. Y. Park. (2017). ETRI, The 2nd and 3rd places in World AI Image Recognition Contest. YNA. https://www.yna.co.kr/view/AKR20170727079900063?input=1195m
  29. S. Y. Ro. (2019). Traffic accident detection in 3 seconds → alarm... CCTV is equipped with intelligence. munhwailbo. http://www.munhwa.com/news/view.html?no=2019100101032603009002