References
- European Bioplastics. Bioplastic Market Data [Internet]. European Bioplastics e.V. 2018 [cited 2019 Jun 24]. Available from: https://www.european-bioplastics.org/market/
- Criddle CS, Frank CW. 2014. Renewable bioplastics and biocomposites from biogas methane and waste-derived feedstock: development of enabling technology, life cycle assessment, and analysis of costs.
- Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3: e1700782. https://doi.org/10.1126/sciadv.1700782
- US EPA. Plastics: Material-Specific Data | Facts and Figures about Materials, Waste and Recycling | US EPA [Internet]. 2019 [cited 2019 Jun 19]. Available from: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specificdata
- Reddy CSK, Ghai R, Rashmi, Kalia VC. 2003. Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87: 137-146. https://doi.org/10.1016/S0960-8524(02)00212-2
- Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. 2016. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89: 161-174. https://doi.org/10.1016/j.ijbiomac.2016.04.069
- Aeschelmann F, Carus M. 2015. Biobased building blocks and polymers in the world: capacities, production, and applications-status quo and trends towards 2020. Ind. Biotechnol. 11: 154-159. https://doi.org/10.1089/ind.2015.28999.fae
- Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. 2017. Reis MAM. recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4: 55. https://doi.org/10.3390/bioengineering4020055
- Leong YK, Show PL, Lan JC-W, Loh H-S, Lam HL, Ling TC.2017. Economic and environmental analysis of PHAs production process. Clean Technol. Environ. Policy 19: 1941-1953. https://doi.org/10.1007/s10098-017-1377-2
- Chen GQ. 2009. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38: 2434-2446. https://doi.org/10.1039/b812677c
- Huang T-Y, Duan K-J, Huang S-Y, Chen CW. 2006. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 33: 701-706. https://doi.org/10.1007/s10295-006-0098-z
- Koller M, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G. 2007. Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol. Symposia 253: 33-39. https://doi.org/10.1002/masy.200750704
- Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J. 2014. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18: 463-470. https://doi.org/10.1007/s00792-013-0622-9
- Pais J, Serafim LS, Freitas F, Reis MAM. 2016. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnol. 33: 224-230. https://doi.org/10.1016/j.nbt.2015.06.001
- Cui Y-W, Zhang H-Y, Ji S-Y, Wang Z-W. 2017. Kinetic analysis of the temperature effect on polyhydroxyalkanoate production by Haloferax mediterranei in synthetic molasses wastewater. J. Polym. Environ. 25: 277-285. https://doi.org/10.1007/s10924-016-0807-2
- Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A. 2019. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour. Technol. 271: 166-173. https://doi.org/10.1016/j.biortech.2018.09.108
- Parolis H, Parolis LAS, Bo IF, Rodriguez-Valera F, Manta MC, Jansson P-E, Sutherland IW. 1996. The structure of the exopolysaccharide produced by the halophilic Archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr. Res. 295: 147-156. https://doi.org/10.1016/S0008-6215(96)90134-2
- Cui Y-W, Shi Y-P, Gong X-Y. 2017. Effects of C/N in the substrate on the simultaneous production of polyhydroxyalkanoates and extracellular polymeric substances by Haloferax mediterranei via kinetic model analysis. RSC Adv. 7: 18953-18961. https://doi.org/10.1039/C7RA02131C
- Ferre-Guell A, Winterburn J. 2018. Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromolecules 19: 996-1005. https://doi.org/10.1021/acs.biomac.7b01788
- Alsafadi D, Al-Mashaqbeh O. A 2017. One-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol. 34: 47-53. https://doi.org/10.1016/j.nbt.2016.05.003
- Zhou M, Yan B, Wong JWC, Zhang Y. 2018. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 248: 68-78.
- ATCC. Haloferax mediterranei (Rodriguez-Valera et al.) Torreblanca et al. AT [Internet]. 2020 [cited 2020 Jan 4]. Available from: https://www.atcc.org/products/all/33500.aspx#culturemethod
- Dyall-Smith M. 2009. The Halohandbook Protocols for halobacterial genetics, pp. 144. version 7.2.
- Lillo JG, Rodriguez-Valera F. 1990. Effects of culture conditions on Poly(3-Hydroxybutyric Acid) production by Haloferax mediterranei. Appl. Environ. Microbiol. 56: 2517-2521. https://doi.org/10.1128/AEM.56.8.2517-2521.1990
- APHA. 2012. Standard methods for the examination of water and wastewater. American public health association.
- Monod J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3: 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
- Lu Q, Han J, Zhou L, Zhou J, Xiang H. 2008. Genetic and biochemical characterization of the Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) synthase in Haloferax mediterranei. J. Bacteriol. 190: 4173-4180. https://doi.org/10.1128/JB.00134-08
- Escalona AM, Varela FR, Gomis AM. Procedure for extraction of polyhydroxyalkanoates from halophilic bacteria which contain them [Internet]. US5536419A, 1996 [cited 2019 Feb 18]. Available from: https://patents.google.com/patent/US5536419A/en
- Braunegg G, Sonnleitner B, Lafferty RM. 1978. A rapid gas chromatographic method for the determination of poly-?-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
- Lemos PC, Viana C, Salgueiro EN, Ramos AM, Crespo JPSG, Reiszcorr MAM. 1998. Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture. Enzyme Microb. Technol. 22: 662-671. https://doi.org/10.1016/S0141-0229(97)00243-3
- Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan Z, Keller J. 2005. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J. Chromatogr. A 1070: 131-136. https://doi.org/10.1016/j.chroma.2005.02.020
- Sluiter A. 2008. Determination of sugars, byproducts, and degradation products in liquid fraction process samples: Laboratory Analytical Procedure (LAP); Issue Date: 12/08/2006. Technical Report.
- Fang C-J, Ku K-L, Lee M-H, Su N-W. 2010. Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresour. Technol. 101: 6487-6493. https://doi.org/10.1016/j.biortech.2010.03.044
- Han J, Hou J, Zhang F, Ai G, Li M, Cai S, et al. 2013. Multiple Propionyl Coenzyme A-Supplying Pathways for Production of the Bioplastic Poly(3-Hydroxybutyrate- co -3-Hydroxyvalerate) in Haloferax mediterranei. Appl. Environ. Microbiol. 79: 2922-2931. https://doi.org/10.1128/AEM.03915-12
- Fogler HS. Elements of chemical reaction engineering. pp. 957. 5th edition. Boston: Prentice Hall; 2016.
- Arslan D, Steinbusch KJJ, Diels L, Hamelers HVM, Strik DPBTB, Buisman CJN, et al. 2016. Selective short-chain carboxylates production: a review of control mechanisms to direct mixed culture fermentations. Crit. Rev. Environ. Sci. Technol. 46: 592-634. https://doi.org/10.1080/10643389.2016.1145959
- Shin H-S, Youn J-H, Kim S-H. 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrog. Energy 29: 1355-1363. https://doi.org/10.1016/j.ijhydene.2003.09.011
- Kim D-H, Kim S-H, Jung K-W, Kim M-S, Shin H-S. 2011. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresour. Technol. 102: 8646-8652. https://doi.org/10.1016/j.biortech.2011.03.030
- Shuler ML, Kargi F. Bioprocess engineering: basic concepts. 2. ed., 14. print. Upper Saddle River, NJ: Prentice Hall PTR; 2008. pp.553. (Prentice Hall PTR international series in the physical and chemical engineering sciences).
- Yu J, Si Y, Keung W, Wong R. 2002. Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha. Process Biochem. 37: 731-738. https://doi.org/10.1016/S0032-9592(01)00264-3
- Korkakaki E, Mulders M, Veeken A, Rozendal R, van Loosdrecht MCM, Kleerebezem R. 2016. PHA production from the organic fraction of municipal solid waste (OFMSW): overcoming the inhibitory matrix. Water Res. 96: 74-83. https://doi.org/10.1016/j.watres.2016.03.033
- Madison LL, Huisman GW. 1999. Metabolic engineering of Poly(3-Hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53. https://doi.org/10.1128/mmbr.63.1.21-53.1999
- Han J, Wu L-P, Hou J, Zhao D, Xiang H. 2015. Biosynthesis, characterization, and Hemostasis potential of tailor-made Poly(3-hydroxybutyrate- co -3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules 16: 578-588. https://doi.org/10.1021/bm5016267
- Venkateswar Reddy M, Mawatari Y, Yajima Y, Satoh K, Venkata Mohan S, Chang Y-C. 2016. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour. Technol. 215: 155-162. https://doi.org/10.1016/j.biortech.2016.03.025
- Ben M, Kennes C, Veiga MC. 2016. Optimization of polyhydroxyalkanoate storage using mixed cultures and brewery wastewater. J. Chem. Technol. Biotechnol. 91: 2817-2826. https://doi.org/10.1002/jctb.4891
Cited by
- Analysis of Polyhydroxyalkanoates Granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by Confocal Fluorescence Microscopy vol.13, pp.10, 2021, https://doi.org/10.3390/polym13101582
- Techno-Economic Analysis on an Industrial-Scale Production System of Polyhydroxyalkanoates (PHA) from Cheese By-Products by Halophiles vol.10, pp.1, 2021, https://doi.org/10.3390/pr10010017