References
- Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP. 2016. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31: 689-699. https://doi.org/10.1016/j.tree.2016.06.008
- Chen C-Y, Chen P-C, Weng FC-H, Shaw GT-W, Wang D. 2017. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS One 12: e0181427. https://doi.org/10.1371/journal.pone.0181427
- Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitan-Espitia JD. 2019. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R Soc. Lond. B Biol. Sci. 374: 20180174. https://doi.org/10.1098/rstb.2018.0174
- Chevalier C, Stojanovic O, Colin Didier J, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. 2015. Gut microbiota orchestrates energy homeostasis during cold. Cell 163: 1360-1374. https://doi.org/10.1016/j.cell.2015.11.004
- Wang J, Gaughan S, Lamer JT, Deng C, Hu W, Wachholtz M, et al. 2020. Resolving the genetic paradox of invasions: preadapted genomes and postintroduction hybridization of bigheaded carps in the Mississippi River Basin. Evol. Appl. 13: 263-277. https://doi.org/10.1111/eva.12863
- Li K, Dan Z, Gesang L, Wang H, Zhou Y, Du Y, et al. 2016. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes. PLoS One 11: e0155863. https://doi.org/10.1371/journal.pone.0155863
- Chevin L-M, Lande R, Mace GM. 2010. Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biol. 8: e1000357. https://doi.org/10.1371/journal.pbio.1000357
- Malathi MV, Ravi PM, Anandham R, Gracy RG, Mohan M, Venkatesan T, et al. 2018. Gut bacterial diversity of insecticide-susceptible and -resistant nymphs of the brown planthopper Nilaparvata lugens stal (Hemiptera: Delphacidae) and elucidation of their putative functional roles. J. Microbiol. Biotechnol. 28: 976-986. https://doi.org/10.4014/jmb.1711.11039
- Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K, et al. 2015. Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome 3: 45. https://doi.org/10.1186/s40168-015-0109-2
- Sommer F, Stahlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J, et al. 2016. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14: 1655-1661. https://doi.org/10.1016/j.celrep.2016.01.026
- Jarak I, Tavares L, Palma M, Rito J, Carvalho RA, Viegas I. 2018. Response to dietary carbohydrates in European seabass (Dicentrarchus labrax) muscle tissue as revealed by NMR-based metabolomics. Metabolomics 14: 95. https://doi.org/10.1007/s11306-018-1390-4
- Lu J, Zhang X, Liu Y, Cao H, Han Q, Xie B, et al. 2019. Effect of fermented corn-soybean meal on serum immunity, the expression of genes related to gut immunity, gut microbiota, and bacterial metabolites in grower-finisher pigs. Front. Microbiol. 10: 2620. https://doi.org/10.3389/fmicb.2019.02620
- Martinez-Mota R, Kohl KD, Orr TJ, Denise Dearing M. 2019. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14: 67-78. https://doi.org/10.1038/s41396-019-0497-6
- Sun Y, Han W, Liu J, Liu F, Cheng Y. 2020. Microbiota comparison in the intestine of juvenile Chinese mitten crab Eriocheir sinensis fed different diets. Aquaculture 515: 734518. https://doi.org/10.1016/j.aquaculture.2019.734518
- Kakumanu ML, Maritz JM, Carlton JM, Schal C. 2018. Overlapping community compositions of gut and fecal microbiomes in lab-reared and field-collected German cockroaches. Appl. Environ. Microbiol. 84: e01037-01018.
- Yang F, Zhao Ya E, Wei J-D, Lu Y-f, Zhang Y, Sun Y-l, et al. 2018. Comparison of microbial diversity and composition in jejunum and colon of the alcohol-dependent rats. J. Microbiol. Biotechnol. 28: 1883-1895. https://doi.org/10.4014/jmb.1806.06050
- Garcia A, Godzien J, Lopez-GonzalvezA, Barbas C. 2016. Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 9: 99-130. https://doi.org/10.4155/bio-2016-0216
- Johnson CH, Ivanisevic J, Siuzdak G. 2016. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17: 451. https://doi.org/10.1038/nrm.2016.25
- Hollywood K, Brison DR, Goodacre R. 2006. Metabolomics: current technologies and future trends. Proteomics 6: 4716-4723. https://doi.org/10.1002/pmic.200600106
- Wang W, Wang C, Ma X. 2013. Ecological Aquaculture of Chinese mitten crab (In Chinese), p. 30. 2 Ed. China Agriculture Press, Beijing, China.
- Wang J, Xu P, Zhou G, Li X, Lu Q, Liu X, et al. 2018. Genetic improvement and breeding practices for Chinese mitten crab, Eriocheir sinensis. J. World Aquac. Soc. 49: 292-301. https://doi.org/10.1111/jwas.12500
- Li X, Dong S, Lei Y, Li Y. 2007. The effect of stocking density of Chinese mitten crab Eriocheir sinensis on rice and crab seed yields in rice-crab culture systems. Aquaculture 273: 487-493. https://doi.org/10.1016/j.aquaculture.2007.10.028
- Herborg LM, Rushton SP, Clare AS, Bentley MG. 2005. The invasion of the Chinese mitten crab (Eriocheir sinensis) in the United Kingdom and its comparison to continental Europe. Biol. Invasions. 7: 959-968. https://doi.org/10.1007/s10530-004-2999-y
- Wang C, Li S, Fu C, Gong X, Huang L, Song X, et al. 2009. Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis. Biol. Invasions. 11: 389-399. https://doi.org/10.1007/s10530-008-9256-8
- Cheng Q, Zhou L, Wang C. 2013. Study on genetic variation and adaptive evolution from the native and colonized populations of Chinese mitten crab (in Chinese). J. Shanghai Ocean Univy. 22: 161-167.
- Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890. https://doi.org/10.1093/bioinformatics/btx692
- Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
- Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
- Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Meth. 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
- Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. 2017. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46: D608-D617. https://doi.org/10.1093/nar/gkx1089
- Thevenot EA, Roux A, Xu Y, Ezan E, Junot C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14: 3322-3335. https://doi.org/10.1021/acs.jproteome.5b00354
- Rothman JA, Leger L, Kirkwood JS, McFrederick QS. 2019. Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Appl. Environ. Microbiol. 85: e01411-19.
- Rudi K, Angell IL, Pope PB, Vik JO, Sandve SR, Snipen L-G. 2018. Stable core gut microbiota across the freshwater-to-saltwater transition for farmed Atlantic Salmon. Appl. Environ. Microbiol. 84: e01974-17.
- Smith CCR, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI. 2015. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9: 2515-2526. https://doi.org/10.1038/ismej.2015.64
- Gao Y-M, Zou K-S, Zhou L, Huang X-D, Li Y-Y, Gao X-Y, et al. 2020. Deep insights into gut microbiota in four carnivorous coral reef fishes from the South China Sea. Microorganisms 8: 426. https://doi.org/10.3390/microorganisms8030426
- Shin N-R, Whon TW, Bae J-W. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33: 496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
- Liu H, Fu C, Ding G, Fang Y, Yun Y, Norra S. 2019. Effects of hairy crab breeding on drinking water quality in a shallow lake. Sci. Total Environ. 662: 48-56. https://doi.org/10.1016/j.scitotenv.2018.12.357
- Chen L, Zhang Y, Liu Q, Hu Z, Sun Y, Peng Z, et al. 2015. Spatial variations of macrozoobenthos and sediment nutrients in Lake Yangcheng: Emphasis on effect of pen culture of Chinese mitten crab. J. Environ. Sci. 37: 118-129. https://doi.org/10.1016/j.jes.2015.06.008
- Naas AE, Mackenzie AK, Mravec J, Schuckel J, Willats WGT, Eijsink VGH, et al. 2014. Do rumen bcteroidetes utilize an alternative mechanism for cellulose degradation? mBio 5: e01401-14.
- Smith JL, Boyer GL, Zimba PV. 2008. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture 280: 5-20. https://doi.org/10.1016/j.aquaculture.2008.05.007
- Tao H, Du B, Wang H, Dong H, Yu D, Ren L, et al. 2018. Intestinal microbiome affects the distinctive flavor of Chinese mitten crabs in commercial farms. Aquaculture 483: 38-45. https://doi.org/10.1016/j.aquaculture.2017.09.031
- Kong L, Cai C, Ye Y, Chen D, Wu P, Li E, et al. 2012. Comparison of non-volatile compounds and sensory characteristics of Chinese mitten crabs (Eriocheir sinensis) reared in lakes and ponds: potential environmental factors. Aquaculture 364-365: 96-102. https://doi.org/10.1016/j.aquaculture.2012.08.008
- Wang S, He Y, Wang Y, Tao N, Wu X, Wang X, et al. 2016. Comparison of flavour qualities of three sourced Eriocheir sinensis. Food Chem. 200: 24-31. https://doi.org/10.1016/j.foodchem.2015.12.093
- Alvares TS, Conte CA, Paschoalin VM, Silva JT, Meirelles Cde M, Bhambhani YN, et al. 2012. Acute L-arginine supplementation increases muscle blood volume but not strength performance. Appl. Physiol. Nutr. Metab. 37: 115-126. https://doi.org/10.1139/h11-144
- Saito Y, Yang Z, Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41: 219-231. https://doi.org/10.1016/S0169-555X(01)00118-0
- Wang J, Xu P, Zhou G, Li X, Lu Q, Liu X, et al. 2018. Genetic improvement and breeding practices for Chinese mitten crab, Eriocheir sinensis. J. World Aquacult. Soc. 49: 292-301. https://doi.org/10.1111/jwas.12500
- Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. 2007. International society of sports nutrition position stand: creatine supplementation and exercise. J. Int. Soc. Sport Nutr. 4: 6. https://doi.org/10.1186/1550-2783-4-6