DOI QR코드

DOI QR Code

The Effect of miR-361-3p Targeting TRAF6 on Apoptosis of Multiple Myeloma Cells

  • Fan, Zhen (Department of Hematology, The First People's Hospital of Jingmen) ;
  • Wu, Zhiwei (Department of Hematology, The First People's Hospital of Jingmen) ;
  • Yang, Bo (Department of Hematology, The First People's Hospital of Jingmen)
  • Received : 2020.10.29
  • Accepted : 2020.12.11
  • Published : 2021.02.28

Abstract

microRNA-361-3p (miR-361-3p) is involved in the carcinogenesis of oral cancer and pancreatic catheter adenocarcinoma, and has anti-carcinogenic effects on non-small cell lung cancer (NSCLC). However, its effect on multiple myeloma (MM) is less reported. Here, we found that upregulating the expression of miR-361-3p inhibited MM cell viability and promoted MM apoptosis. We measured expressions of tumor necrosis factor receptor-associated factor 6 (TRAF6) and miR-361-3p in MM cells and detected the viability, colony formation rate, and apoptosis of MM cells. In addition, we measured expressions of apoptosis-related genes Bcl-2, Bax, and Cleaved caspase-3 (C caspase-3). The binding site between miR-361-3p and TRAF6 was predicted by TargetScan. Our results showed that miR-361-3p was low expressed in the plasma of MM patients and cell lines, while its overexpression inhibited viability and colony formation of MM cells and increased the cell apoptosis. Furthermore, TRAF6, which was predicted to be a target gene of miR-361-3p, was high-expressed in the plasma of patients and cell lines with MM. Rescue experiments demonstrated that the effect of TRAF6 on MM cells was opposite to that of miR-361-3p. Upregulation of miR-361-3p induced apoptosis and inhibited the proliferation of MM cells through targeting TRAF6, suggesting that miR-361-3p might be a potential target for MM therapy.

Keywords

References

  1. Adams JM, Cory S. 2018. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 25: 27-36. https://doi.org/10.1038/cdd.2017.161
  2. Amodio N, D'Aquila P, Passarino G, Tassone P, Bellizzi D. 2017. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin. Ther. Targets 21: 91-101. https://doi.org/10.1080/14728222.2016.1266339
  3. Amodio N, Stamato MA, Gulla AM, Morelli E, Romeo E, Raimondi L, et al. 2016. Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol. Cancer Ther. 15: 1364-1375. https://doi.org/10.1158/1535-7163.MCT-15-0985-T
  4. Bong IPN, Ng CC, Baharuddin P, Zakaria Z. 2017. MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy. Genes Genomics 39: 533-540. https://doi.org/10.1007/s13258-017-0518-7
  5. Botta C, Cuce M, Pitari M, Caracciolo D, Gulla A, Morelli E, et al. 2018. MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia 32: 1003-1015. https://doi.org/10.1038/leu.2017.336
  6. Buschhaus J, Humphries B, Luker K, Luker G. 2018. A Caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cells 7: 57. https://doi.org/10.3390/cells7060057
  7. Chen W, Wang J, Liu S, Wang S, Cheng Y, Zhou W, et al. 2016. MicroRNA-361-3p suppresses tumor cell proliferation and metastasis by directly targeting SH2B1 in NSCLC. J. Exp. Clin. Cancer Res. 35: 76. https://doi.org/10.1186/s13046-016-0357-4
  8. Fang J, Bolanos LC, Choi K, Liu X, Christie S, Akunuru S, et al. 2017. Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nat. Immunol. 18: 236-245. https://doi.org/10.1038/ni.3654
  9. Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, et al. 2018. TRAF6 mediates basal activation of NF-κB necessary for hematopoietic stem cell homeostasis. Cell Rep. 22: 1250-1262. https://doi.org/10.1016/j.celrep.2018.01.013
  10. Gu Y, Xiao X, Yang S. 2017. LncRNA MALAT1 acts as an oncogene in multiple myeloma through sponging miR-509-5p to modulate FOXP1 expression. Oncotarget 8:101984-101993. https://doi.org/10.18632/oncotarget.21957
  11. Hu J, Li L, Chen H, Zhang G, Liu H, Kong R, et al. 2018. MiR-361-3p regulates ERK1/2-induced EMT via DUSP2 mRNA degradation in pancreatic ductal adenocarcinoma. Cell Death Dis. 9: 807. https://doi.org/10.1038/s41419-018-0839-8
  12. Hu Q, Song J, Ding B, Cui Y, Liang J, Han S. 2018. miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol. Rep. 39: 3015-3024.
  13. Karakas LA, YA Tohma, Kuscu E, Ozen O, Ayhan A. 2019. Analysis of Bcl-2, PTEN, p53, and Ki-67 expressions in endometrial cancer arising from endometrial polyp. Eur. J. Gynaecol. Oncol. 40: 796-802.
  14. Karpel-Massler G, Ishida CT, Bianchetti E, Shu C, Perez-Lorenzo R, Horst B, et al. 2017. Inhibition of mitochondrial matrix chaperones and antiapoptotic Bcl-2 family proteins empower antitumor therapeutic responses. Cancer Res. 77: 3513-3526. https://doi.org/10.1158/0008-5472.CAN-16-3424
  15. Khodadadi-Jamayran A, Akgol-Oksuz B, Afanasyeva Y, Heguy A, Thompson M, Ray K, et al. 2018. Prognostic role of elevated mir-24-3p in breast cancer and its association with the metastatic process. Oncotarget 9: 12868-12878. https://doi.org/10.18632/oncotarget.24403
  16. Kumar SK, Callander NS, Alsina M, Atanackovic D, Biermann JS, Chandler JC, et al. 2017. Multiple myeloma, version 3.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 15: 230-269. https://doi.org/10.6004/jnccn.2017.0023
  17. Lazzari E, Mondala PK, Santos ND, Miller AC, Pineda G, Jiang Q, et al. 2017. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat. Commun. 8: 1922. https://doi.org/10.1038/s41467-017-01890-w
  18. Ling H, Pickard K, Ivan C, Isella C, Ikuo M, Mitter R, et al. 2016. The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis. Gut 65: 977-989. https://doi.org/10.1136/gutjnl-2015-309372
  19. Lulla AR, Slifker MJ, Zhou Y, Lev A, Einarson MB, Dicker DT, et al. 2017. miR-6883 family miRNAs target CDK4/6 to induce G1 phase cell-cycle arrest in colon cancer cells. Cancer Res. 77: 6902-6913. https://doi.org/10.1158/0008-5472.CAN-17-1767
  20. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. 2017. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 14: 100-113. https://doi.org/10.1038/nrclinonc.2016.122
  21. Meng YB, He X, Huang YF, Wu QN, Zhou YC, Hao DJ. 2017. Long moncoding RNA CRNDE promotes multiple myeloma cell growth by suppressing miR-451. Oncol. Res. 25: 1207-1214. https://doi.org/10.3727/096504017X14886679715637
  22. Moreau P, San Miguel J, Sonneveld P, Mateos MV, Zamagni E, Avet-Loiseau H, et al. 2017. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28(suppl 4): iv52-iv61. https://doi.org/10.1093/annonc/mdx096
  23. Morgan JJ, McAvera RM, Crawford LJ. 2019. TRAF6 Silencing attenuates multiple myeloma cell adhesion to bone marrow stromal cells. Int. J. Mol. Sci. 20: 702. https://doi.org/10.3390/ijms20030702
  24. Rastgoo N, Abdi J, Hou J, Chang H. 2017. Role of epigenetics-microRNA axis in drug resistance of multiple myeloma. J. Hematol. Oncol. 10: 121. https://doi.org/10.1186/s13045-017-0492-1
  25. Shen X, Zhang Y, Wu X, Guo Y, Shi W, Qi J, et al. 2017. Upregulated lncRNA-PCAT1 is closely related to clinical diagnosis of multiple myeloma as a predictive biomarker in serum. Cancer Biomark. 18: 257-263. https://doi.org/10.3233/CBM-160158
  26. Tang L, Zhao B, Zhang H, Du Q, Zhu J, Zhao Z, et al. 2017. Regulation of nonylphenol‐induced reproductive toxicity in mouse spermatogonia cells by miR‐361‐3p. Mol. Rep. Dev. 84: 1257-1270. https://doi.org/10.1002/mrd.22923
  27. Tassone P, Tagliaferri P, Di Martino MT. Inhibitors of mir-17-92 cluster for anti-tumor activity in multiple myeloma and other malignancies. Google Patents; 2018.
  28. Tian L, Zhao Z, Xie L, Zhu J. 2018. MiR-361-5p inhibits the mobility of gastric cancer cells through suppressing epithelial-mesenchymal transition via the Wnt/beta-catenin pathway. Gene 675: 102-109. https://doi.org/10.1016/j.gene.2018.06.095
  29. Xia Y, Chen Y, Tang L, Wang Z, Zheng Y. 2018. Pterostilbene attenuates acute kidney injury in septic mice. Exp. Ther. Med. 15: 3551- 3555.
  30. Xu Z, Huang C, Hao D. 2017. MicroRNA-1271 inhibits proliferation and promotes apoptosis of multiple myeloma cells through inhibiting smoothened-mediated Hedgehog signaling pathway. Oncol. Rep. 37: 1261-1269. https://doi.org/10.3892/or.2016.5304
  31. Yonemori M, Seki N, Yoshino H, Matsushita R, Miyamoto K, Nakagawa M, et al. 2016. Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci. 107: 1233-1242. https://doi.org/10.1111/cas.13002
  32. Zhao D, Cui Z. 2019. MicroRNA-361-3p regulates retinoblastoma cell proliferation and stemness by targeting hedgehog signaling. Exp. Ther. Med. 17: 1154-1162.
  33. Zhao Y, Cong L, Lukiw WJ. 2018. Plant and Animal microRNAs (miRNAs) and their potential for inter-kingdom communication. Cell Mol. Neurobiol. 38: 133-140. https://doi.org/10.1007/s10571-017-0547-4
  34. Zhao Y, Xie Z, Lin J, Liu P. 2017. MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am. J. Transl. Res. 9: 2437-2446.