DOI QR코드

DOI QR Code

SB4 등급 방현기능 콘크리트 방호울타리의 방호성능 평가

Evaluation of the Protection Performance of SB4 Class Concrete Barrier with Anti-Glare Function

  • 주봉철 (한국건설기술연구원 지하공간안전연구센터) ;
  • 홍기남 (충북대학교 토목공학과) ;
  • 윤정현 ((주)스펙엔지니어링) ;
  • 이재하 (한국해양대학교 건설공학과) ;
  • 김정호 (한국건설기술연구원 지하공간안전연구센터)
  • 투고 : 2021.01.05
  • 심사 : 2021.02.25
  • 발행 : 2021.02.28

초록

본 논문은 방현기능을 갖는 SB4등급 중앙분리대용 콘크리트 방호울타리를 개발하는 과정을 설명한다. 개발 단면은 높이와 하면의 폭이 각각 1,270mm와 560mm이다. 단면 중앙에는 방호성능을 향상하기 위해 와이어 매쉬가 배치된다. 충돌해석은 이 단면이 강도 및 탑승자 보호 성능을 만족하며 울타리에 손상이 발생하지 않는 것으로 예측하였다. 실물 충돌시험에서도 이 단면은 강도 및 탑승자 보호 성능을 만족하는 것을 확인하였다. 그러나 트럭 충돌 시 콘크리트 방호울타리 2곳에 손상이 관찰되었다. 향후 콘크리트 중앙분리대용 방호 울타리 충돌해석의 정확성을 높이기 위해서는 국내 시판 차량에 대한 모델 개발과 지속적인 충돌해석 기법에 관한 연구가 수행되어야 할 것으로 판단된다.

This paper describes the process of developing a concrete median barrier of SB4 grade with anti-glare function. The development section has a height and width of 1,270mm and 560mm, respectively. A wire mesh is placed in the center of the cross section to improve the protection performance. Collision analysis predicted that this section satisfies the strength and occupant protection performance, and that no damage to the barrier occurs. In the actual collision test, it was confirmed that this section satisfies the strength and occupant protection performance. However, damage was observed on two concrete barrier when the truck crashed. In order to improve the accuracy of the collision analysis of the concrete barrier in the future, it is considered that a study on the model development and continuous collision analysis method for domestic commercial vehicles should be carried out.

키워드

참고문헌

  1. MLIT, (2016), Design Practice Guidelines for National Highway Construction, Ministry of Land, Infrastructure and Transport (MLIT), Korea, 703-706.
  2. KBS, (2019), 'Road Glare Screen' to Prevent Glare, Fear of Weapons causing Major Accidents, TV News, https://news.kbs.co.kr/news/view.do?ncd=4306132
  3. Lee, S. K., Jung, B. J., Joo, J. W., Kwon, B. K., (2001), A Study on the Monitoring and Optimization of the New Type of Concrete Median Barrier, Research Report, Korea Expressway Corporation (KEC), Korea, 9-18.
  4. MLIT, (2015), Manual for Assessing Vehicle Protection Safety Facility by Real Collision Test, Ministry of Land, Infrastructure and Transport (MLIT), Korea, 27.
  5. Oh, H. W., Joo, J. W., Jang, D. Y., Lee, J. S., (2006), A Study on the Evaluation & Improvement of Freeway Barriers, Korea Expressway Corporation (KEC), Korea, 47-109.
  6. Lee, I. K., Sim, J. W., Joo, J. W., Jang, T. S., Ryu, S. J., Kim, S. D., (2017), Performance Improvement of Concrete Median Barrier, Korea Expressway Corporation (KEC), Korea, 45-46, 70, 106-224.
  7. AASHTO, (2011), Roadside Design Guide 4th Edition, American Association of State Highway and Transportation Officials, 5-28.
  8. Keller, E. A., Sicking, D. L., Faller, R. K., Polivka, K. A., Rohde, J. R.,(2003), Guidelines for Attachments to Bridge Rails & Median Barriers, Technical Report, Nebraska Department of Roads, 46.
  9. MLIT, (2014), Road Safety Facilities Installation & Management Guide (Part of the Safety Facilities for Vehicles Protection), Ministry of Land, Infrastructure and Transport (MLIT), Korea. 5-6, 10-12.
  10. AASHTO (2016), Manual for Assessing Safety Hardware 2nd Edition, American Association of State Highway and Transportation Officials, 99-109.
  11. MLIT, (2020), Rules on Road Structure and Facility Standards, Ministry of Land, Infrastructure and Transport (MLIT), Korea, Aticle 11.
  12. Murray, Y. D. (2007) User Manual for LS-DYNA Concrete Material Model 159, Federal Highway Administration (FHWA), FHWA-HRT-05-062.
  13. Lee, J. H., Lee, I. K., Jeong, Y. S., Kim, K. J., Kim, W. S., (2017), Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration, Journal of the Computational Structural Engineering Institute of Korea (COSEIK), COSEIK, 30, 4, 297-300. https://doi.org/10.7734/COSEIK.2017.30.4.297
  14. Thai, D. K., Kim, S. E., Lee, H. K., (2014), Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact, Nuclear Engineering and Design, 276, 232.
  15. Murray, Y. D., Abu-Odeh, A., Bligh, R. (2007) Evaluation of LS-DYNA Concrete Material Model 159, Federal Highway Administration (FHWA), FHWA-HRT-05-063.
  16. Chung, C.H, Lee, J. W, Kim, S.Y., Lee, J. H., (2011), Influencing Factors on Numerical Simulation of Crash between RC Slab and Soft Projectile, Journal of Computational Structural Engineering Institute of Korea, 24(6), 591-600.
  17. Oldani, E., Castelletti, L., Anghileri, M., Mongiardini, M., (2005), Impact Analysis of 16t Truck against different Road Safety Restraint Systems, 5th European LS-DYNA User Conference, UK, 7b-24
  18. Kim, W., Lee, I., Kim, K., Jeong, Y., Lee, J. (2019), Evaluation of concrete barriers with novel shock absorbers subjected to impact loading. Archives of Civil and Mechanical Engineering, 19, 657-671. https://doi.org/10.1016/j.acme.2019.01.004
  19. Lee, J., Jeong, Y., Kim, K., Lee, I., Kim, W. (2019), Experimental and Numerical Investigation of Deformable Concrete Median Barrier. Materials, 12(19), 3176. https://doi.org/10.3390/ma12193176
  20. Kim, Kyeongjin (2021), Application of SPH and ANN for Prediction of the Amount of Concrete Fragmentation under Impact Loadings. Doctoral Dissertation, Korea Maritime & Ocean University, Busan, Rep. of Korea.
  21. Kim, K., Kim, W., Jung, Y., Lee, J., (2020), Prediction of Damaged Area of Reinforced Concrete Structure under Impact Loadings using FEM and SPH, Proceedings of Korea Concrete Institute (KCI) fall Conference, KCI, 171-172.
  22. Kim, K., Lee, J., Kim, W., Jung, Y., (2019), Deformed Shape of Concrete Structures using Lattice Discrete Particle Model, rediction of Damaged Area of Reinforced Concrete Structure under Impact Loadings using FEM and SPH, Proceedings of Korea Concrete Institute (KCI) Spring Conference, KCI, 293-294.