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Abstract. Recently we investigated a type of Hyers-Ulam stability of the Schrödinger

equation with the symmetric parabolic wall potential that efficiently describes the quan-

tum harmonic oscillations. In this paper we study a type of Hyers-Ulam stability of the

Schrödinger equation when the potential barrier is a quartic wall in the solid crystal models.

1. Introduction

In 1940, Ulam [21] proposed a number of important unsolved problems at
a conference at the University of Wisconsin. One of them was the following
question about the stability of group homomorphisms:

Suppose G1 is a group and G2 a metric group with the metric
d(·, ·). Given ε > 0, can we find δ > 0 such that if a function
h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ
for any x, y ∈ G1, then there exists a group homomorphism
H : G1 → G2 with d(h(x), H(x)) < ε for any x ∈ G1?

The following year, Hyers [7] answered the Ulam’s question for approxi-
mately additive functions with the assumption that G1 and G2 are Banach

0Received August 24, 2020. Revised October 6, 2020. Accepted October 7, 2020.
02010 Mathematics Subject Classification: 34D10, 34A40, 34A45, 39B82, 41A30.
0Keywords: Perturbation, Hyers-Ulam stability, Schrödinger equation, time independent

Schrödinger equation, quartic potential wall.
0Corresponding author: B. Kim(bkim@hongik.ac.kr).



158 S.-M. Jung and B. Kim

spaces. Indeed, he showed that each solution to the inequality ‖f(x + y) −
f(x)− f(y)‖ ≤ ε (for any x and y) can be approximated by an exact solution,
that is, by an additive function. In this case, the Cauchy additive equation,
f(x+ y) = f(x) + f(y), is said to have the Hyers-Ulam stability.

Meanwhile, Rassias [18], while trying not to strongly limit the Cauchy dif-
ference, tried to weaken the condition for the Cauchy difference as following:

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
(
‖x‖p + ‖y‖p

)
,

where p < 1 is a fixed real number, and he proved the theorem of Hyers
in this case. That is to say, he showed the Hyers-Ulam-Rassias stability (or
generalized Hyers-Ulam stability) of the Cauchy additive functional equation.
P. Găvruţa [6] expanded the theorem of Rassias, and since then, both have
attracted the attention of many mathematicians (see [8, 11, 19]).

Again we assume that I = (a, b) is an open interval with −∞ ≤ a < b ≤ +∞
and n a fixed positive integer. Let us consider the linear differential equation
of nth order

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = g(x), (1.1)

where y : I → C is an n times continuously differentiable function, a0, . . . , an :
I → C are continuous coefficient functions, and g : I → C is a continuous
function.

We say that the differential equation (1.1) satisfies the Hyers-Ulam stability
if the following statement is true for any ε > 0: For any n times continuously
differentiable function y : I → C which satisfies∣∣∣an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x)− g(x)

∣∣∣ ≤ ε
for all x ∈ I, there is a solution y0 : I → C to the differential equation (1.1)
such that

|y(x)− y0(x)| ≤ K(x, ε)

for each x ∈ I, where K(x, ε) depends on x and ε and lim
ε→0

K(x, ε) = 0 no

matter what the value of x is.

When the limit lim
ε→0

K(x, ε) indeed depends on the value of x, it appears

somewhat suitable for Hyers-Ulam-Rassias stability in a broad sense, but not
in its strict sense. Therefore, the differential equation (1.1) may be said to
have a type of Hyers-Ulam stability as there is no other appropriate official
terminology yet. We refer to [8, 11, 19] for the more detailed definition of
Hyers-Ulam stability.

To the best of our knowledge, Ob loza [15, 16] is the first mathematician
who demonstrated Hyers-Ulam stability of the differential equations. Indeed,
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Ob loza perfectly showed the Hyers-Ulam stability of linear differential equa-
tions of the form

y′(x) + f(x)y(x) = g(x). (1.2)

Since then, more mathematicians have dealt with this topic more broadly and
in depth (see [1, 2, 4, 5, 9, 10, 13, 14, 17, 18, 20, 22]).

In a recent paper [12], the authors studied a type of Hyers-Ulam stability
for a one-dimensional time independent Schrödinger equation

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x), (1.3)

when the system has a symmetric parabolic wall potential that has a strong
relationship with the quantum harmonic oscillations.

In this paper, we prove a type of Hyers-Ulam stability of the one-dimensional
Schrödinger equation (1.3) with a symmetric quartic wall potential, where
ψ : R → C is the wave function, V a symmetric quartic potential function, ~
the reduced Planck constant, m the mass of the particle, and E the energy of
the particle with E > 0.

Finally, we want to mention that we write this paper based on the ideas
and experiences of the papers [3, 12, 13, 17].

2. Preliminaries

The formula that expresses the solution to the first-order linear inhomoge-
neous differential equation (1.2) is as follows.

Lemma 2.1. Suppose that f, g : R → C are continuous functions such that
each of the integrals below exists. Every continuously differentiable function
y : R → C is a solution to the first-order linear inhomogeneous differential
equation (1.2) if and only if y can be expressed as

y(x) = exp

(
−
∫ x

0
f(w)dw

)(
y(c) +

∫ x

0
g(s) exp

(∫ s

0
f(w)dw

)
ds

)
,

where y(c) is an arbitrary complex number.

By using Lemma 2.1, we may prove easily the generalized Hyers-Ulam sta-
bility (or the Hyers-Ulam-Rassias stability) of the first-order linear inhomo-
geneous differential equation (1.2). The Hyers-Ulam stability version of the
following theorem has been proved by Ob loza long years ago, but its easy-to-
use version was proved in [12, Lemma 2] by using a way that is a little different
from that of Ob loza’s, so we will omit the proof here. Interested readers may
well refer to the paper. By <(z) we mean the real part of a complex number
z.
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Lemma 2.2. Suppose that f, g : R → C and ϕ : R → [0,∞) are continu-
ous functions such that each of the integrals below exists. If a continuously
differentiable function y : R→ C satisfies the inequality∣∣y′(x) + f(x)y(x)− g(x)

∣∣ ≤ ϕ(x)

for all x ∈ R, then there exists a continuously differentiable solution y0 : R→
C to the first-order linear inhomogeneous differential equation (1.2) such that

|y(x)− y0(x)|

≤ exp

(
−<

(∫ x

0
f(w)dw

)) ∣∣∣∣∫ x

0
ϕ(s) exp

(
<
(∫ s

0
f(w)dw

))
ds

∣∣∣∣
for all x ∈ R.

3. A type of Hyers-Ulam stability

In this section, we assume that the potential V : R→ R is a quartic function
defined by

V (x) =
~2α2

2m
x4 +

~2α
m

x+ E, (3.1)

where α is a fixed real number and E > 0.
Since the inequality (3.3) below is affected by the value of x, the property

observed in the following theorem is called a type of Hyers-Ulam stability.

Theorem 3.1. Assume that V : R→ R is a quartic potential function defined
by (3.1), where α is a fixed real number and E is a positive real number as
the energy of the particle under consideration. For any ε > 0, if a twice
continuously differentiable function ψ : R→ C satisfies the inequality∣∣∣∣− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)− Eψ(x)

∣∣∣∣ ≤ ε (3.2)

for all x ∈ R, then there exists a twice continuously differentiable exact solution
ψ0 : R→ C to the one-dimensional Schrödinger equation (1.3) such that

|ψ(x)− ψ0(x)|

≤ 2m

~2
ε exp

(α
3
x3
) ∣∣∣∣∫ x

0
exp

(
−2

3
αs3
) ∣∣∣∣∫ s

0
exp

(α
3
w3
)
dw

∣∣∣∣ ds∣∣∣∣ (3.3)

for all x ∈ R.

Proof. Considering the form of the potential function V given in (3.1), we
define the following differential operators O1 and O2 by

(O1ψ)(x) = ψ′(x)− αx2ψ(x),

(O2ψ)(x) = ψ′(x) + αx2ψ(x)
(3.4)
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for any twice continuously differentiable function ψ : R→ C.
For every twice continuously differentiable function ψ : R → C, it follows

from (3.1) and (3.4) that

− ~2

2m
((O2 ◦O1)ψ)(x) = − ~2

2m

(
ψ′′(x)−

(
α2x4 + 2αx

)
ψ(x)

)
= − ~2

2m
ψ′′(x) + V (x)ψ(x)− Eψ(x)

for all x ∈ R, which implies that∣∣∣∣− ~2

2m
ψ′′(x) + V (x)ψ(x)− Eψ(x)

∣∣∣∣ ≤ ε (for all x ∈ R)

if and only if

|((O2 ◦O1)ψ)(x)| ≤ 2m

~2
ε (for all x ∈ R)

which is again equivalent to∣∣φ′(x) + αx2φ(x)
∣∣ ≤ 2m

~2
ε (for all x ∈ R), (3.5)

where φ(x) = (O1ψ)(x).
Since φ(x) = ψ′(x)−αx2ψ(x), by considering (3.2) and (3.5), we may apply

Lemma 2.2 to the inequality (3.5), with the substitutions shown as follows: In
(3.5), φ(x) is for y(x), αx2 is for f(x), 0 is for g(x), and 2m

~2 ε is for ϕ(x).
We conclude that there exists a continuously differentiable function φ0 :

R→ C satisfying

φ′0(x) + αx2φ0(x) = 0 (3.6)

and

|φ(x)− φ0(x)| ≤ 2m

~2
ε exp

(
−
∫ x

0
αw2dw

) ∣∣∣∣∫ x

0
exp

(∫ s

0
αw2dw

)
ds

∣∣∣∣
=

2m

~2
ε

∣∣∣∣∫ x

0
exp

(
−α

3

(
x3 − s3

))
ds

∣∣∣∣ (3.7)

for all x ∈ R.
Because φ(x) = ψ′(x)− αx2ψ(x), it follows from (3.7) that∣∣ψ′(x)− αx2ψ(x)− φ0(x)

∣∣ ≤ 2m

~2
ε

∣∣∣∣∫ x

0
exp

(
−α

3

(
x3 − s3

))
ds

∣∣∣∣ (3.8)

for all x ∈ R. We apply again Lemma 2.2 to the inequality (3.8) with the
substitutions presented as follows: In (3.8), ψ(x) is for y(x), −αx2 is for f(x),
φ0(x) is for g(x), and 2m

~2 ε
∣∣∫ x

0 exp
(
−α

3

(
x3 − s3

))
ds
∣∣ is for ϕ(x).
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From Lemma 2.2, there exists a continuously differentiable function ψ0 :
R→ C satisfying

ψ′0(x)− αx2ψ0(x) = φ0(x) (3.9)

and

|ψ(x)− ψ0(x)| ≤ 2m

~2
ε exp

(α
3
x3
) ∣∣∣∣∫ x

0
exp

(
−2

3
αs3
) ∣∣∣∣∫ s

0
exp

(α
3
w3
)
dw

∣∣∣∣ ds∣∣∣∣
for all x ∈ R.

Further, by Lemma 2.1 and (3.9), ψ0 has the form

ψ0(x) = exp
(α

3
x3
)(

ψ0(c) +

∫ x

0
φ0(s) exp

(
−α

3
s3
)
ds

)
,

where ψ0(c) is an arbitrary complex number. Because φ0 is continuously
differentiable, we see that ψ0 is twice continuously differentiable.

Finally, using (3.6) and (3.9), it is easily shown that ψ0 : R→ C is a solution
to the one-dimensional Schrödinger equation (1.3). �

For any real number α < 0, it holds that∫ s

0
exp

(α
3
w3
)
dw =

1

3
(
−α

3

)1/3γ (1

3
,−α

3
s3
)

=
1

32/3(−α)1/3

∫ −α
3
s3

0
e−ww−2/3dw,

where the incomplete gamma function γ(β, x) is defined by

γ(β, x) =

∫ x

0
e−ttβ−1dt.

Hence, if the parameter α of the potential function (3.1) is negative, then the
inequality (3.3) becomes

|ψ(x)− ψ0(x)| ≤ 2m
3
√
−9α~2

ε exp
(α

3
x3
) ∣∣∣∣∣
∫ x

0
exp

(
−2

3
αs3
) ∣∣∣∣∣
∫ −α

3
s3

0

dw
3
√
w2ew

∣∣∣∣∣ ds
∣∣∣∣∣

for all x ∈ R.

4. Discussion

The Schrödinger equation is based on the postulates of quantum mechanics,
and the perturbation theory of Schrödinger equation may be very useful for
the case when it is very hard to find the exact solution for some potentials. It is
also possible to use the one-dimensional Schrödinger equation to examine the
state of particles reflected on the rectangular potential wall that is somewhat
related to the subject matter of this paper.
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Because the distance between the perturbed solution ψ and the exact solu-
tion ψ0 of the one-dimensional time independent Schrödinger equation (1.3)
is influenced strongly by x, we know that in Theorem 3.1 we have failed to
demonstrate the exact Hyers-Ulam stability of the Schrödinger equation when
the relevant potential function is quartic and E > 0. So instead of saying that
we have proved the Hyers-Ulam stability in this paper, we are saying that we
have proved a type of Hyers-Ulam stability.

We think Lemma 2.2 should be greatly improved to demonstrate the Hyers-
Ulam stability of the Schrödinger equation (1.3) with quartic potential. And
we believe that it will take a considerable amount of time to achieve this, so
we would like to leave this improvement as a task to be done next.

5. Conclusions

Applying the operator method, we have verified that the one-dimensional
time independent Schrödinger equation has a type of Hyers-Ulam stability if
the associated potential function is given by the form (3.1). The main result
of the present paper did not address the more general case of the Schrödinger
equation when the associated potential function is in the form:

V (x) = Ax4 +Bx3 + Cx2 +Dx+ E,

where the parameters A, B, C, D, and E meet the minimum necessary
conditions. Nevertheless, we think it is worthwhile that we considered the
Schrödinger equation with a quartic potential function and investigated a type
of Hyers-Ulam stability of it.
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