APPROXIMATION OPERATORS AND FUZZY ROUGH SETS IN CO-RESIDUATED LATTICES

Ju-Mok Oh and Yong Chan $\mathrm{KIm}^{*, \dagger}$

Abstract

In this paper, we introduce the notions of a distance function, Alexandrov topology and Θ-upper (\oplus-lower) approximation operator based on complete co-residuated lattices. Under various relations, we define (\oplus, \ominus)-fuzzy rough set on complete co-residuated lattices. Moreover, we study their properties and give their examples.

1. Introduction

Pawlak [15,16] introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. For an extension of Pawlak's rough sets, many researchers $[1-11,19,20,24]$ developed lower and upper approximation operators. Radzikowska et al. $[17,18]$ investigated (I, T)-generalized fuzzy rough set where T is a t-norm and I is an implication. J.S.Mi et al.[14] investigated (S, T)-generalized fuzzy rough set where T is a t-norm and $S(a, b)=1-T(1-a, 1-b)$ is an implication.

Ward et al.[23] introduced a complete residuated lattice which is an algebraic structure for many valued logic [3-5]. It is an important mathematical tool as algebraic structures for many valued logics [1-11,19,20]. Using this concepts, fuzzy rough sets, information systems and decision rules were investigated in complete residuated lattices [1,2,7,20,25]. Moreover, Zheng et al.[25] introduced a complete co-residuated lattice as the generalization of t-conorm. Junsheng et al.[7] investigated $(\odot, \&)$ generalized fuzzy rough set on $(L, \vee, \wedge, \odot, \&, 0,1)$ where $(L, \vee, \wedge, \&, 0,1)$ is a complete residuated lattice and $(L, \vee, \wedge, \odot, 0,1)$ is complete co-residuated lattice in a sense [13].

As the study of rough set theory and topological structures, many researchers [1,6$9,12,14,15,17,21]$ investigated the Alexandrov topology and lattice structures of fuzzy rough sets determined by lower and upper sets. In particular, Kim [8-11] introduce the notion of Alexandrov topologies as a topological viewpoint of fuzzy rough sets and studied the relations among fuzzy preorders, lower and upper approximation operators and Alexandrov topologies in complete residuated lattices.

[^0]In this paper, we introduce the notions of distance functions, Alexandrov topologies and \ominus-upper (\oplus-lower) approximation operators based on complete co-residuated lattices $(L, \vee, \wedge, \oplus, 0,1)$. Under various relations, we define (\oplus, \ominus)-fuzzy rough set on complete co-residuated lattices $(L, \vee, \wedge, \oplus, 0,1)$ where \ominus is induced by \oplus. Moreover, we study their properties and give their examples.

2. Preliminaries

Definition 2.1. [7,25] An algebra $(L, \wedge, \vee, \oplus, 0,1)$ is called a complete co-residuated lattice if it satisfies the following conditions:
(Q1) $L=(L, \leq, \vee, \wedge, 0,1)$ is a complete lattice where 0 is the bottom element and 1 is the top element.
(Q2) $a=a \oplus 0, a \oplus b=b \oplus a$ and $a \oplus(b \oplus c)=(a \oplus b) \oplus c$ for all $a, b, c \in L$.
(Q3) $\left(\bigwedge_{i \in \Gamma} a_{i}\right) \oplus b=\bigwedge_{i \in \Gamma}\left(a_{i} \oplus b\right)$.
Let (L, \leq, \oplus) be a complete co-residuated lattice. For each $x, y \in L$, we define

$$
x \ominus y=\bigwedge\{z \in L \mid y \oplus z \geq x\}
$$

Then $(x \oplus y) \geq z$ iff $x \geq(z \ominus y)$.
In this paper, we assume $(L, \wedge, \vee, \oplus, \ominus, 0,1)$ is a complete co-residuated lattice. For $\alpha \in L, A \in L^{X}$, we denote $(\alpha \ominus A),(\alpha \oplus A), \alpha_{X} \in L^{X}$ as $(\alpha \ominus A)(x)=\alpha \ominus$ $A(x),(\alpha \oplus A)(x)=\alpha \oplus A(x), \alpha_{X}(x)=\alpha$.

Put $N(x)=1 \ominus x$. The condition $N(N(x))=x$ for each $x \in L$ is called a double negative law.

Remark 2.2. (1) An infinitely distributive lattice $(L, \leq, \vee, \wedge, \oplus=\vee, 0,1)$ is a complete co-residuated lattice. In particular, the unit interval $([0,1], \leq, \vee, \wedge, \oplus=$ $\vee, 0,1)$ is a complete co-residuated lattice $[7,25]$.

$$
\begin{aligned}
& x \ominus y=\bigwedge\{z \in L \mid y \vee z \geq x\} \\
& = \begin{cases}0, & \text { if } y \geq x, \\
x, & \text { if } y \nsucceq x .\end{cases}
\end{aligned}
$$

Put $N(x)=1 \ominus x=1$ for $x \neq 1$ and $N(1)=0$. Then $N(N(x))=0$ for $x \neq 1$ and $N(N(1))=1$. Hence N does not satisfy a double negative law.
(2) The unit interval with a right-continuous t-conorm $\oplus,([0,1], \leq, \oplus)$, is a complete co-residuated lattice [7.25].
(3) $([1, \infty], \leq, \vee, \oplus=\cdot, \wedge, 1, \infty)$ is a complete co-residuated lattice where

$$
\begin{aligned}
& x \ominus y=\bigwedge\{z \in[1, \infty] \mid y z \geq x\} \\
& = \begin{cases}1, & \text { if } y \geq x, \\
\frac{x}{y}, & \text { if } y \nsupseteq x .\end{cases} \\
\infty \cdot a= & a \cdot \infty=\infty, \forall a \in[1, \infty], \infty \ominus \infty=1 .
\end{aligned}
$$

Put $N(x)=\infty \ominus x=\infty$ for $x \neq \infty$ and $N(\infty)=1$. Then $N(N(x))=1$ for $x \neq \infty$ and $N(N(\infty))=\infty$. Hence N does not satisfy a double negative law.
(4) $([0, \infty], \leq, \vee, \oplus=+, \wedge, 0, \infty)$ is a complete co-residuated lattice where

$$
\begin{aligned}
& y \ominus x=\bigwedge\{z \in[0, \infty] \mid x+z \geq y\} \\
& =\bigwedge\{z \in[0, \infty] \mid z \geq-x+y\}=(y-x) \vee 0, \\
& \infty+a=a+\infty=\infty, \forall a \in[0, \infty], \infty \ominus \infty=0 .
\end{aligned}
$$

Put $N(x)=\infty \ominus x=\infty$ for $x \neq \infty$ and $N(\infty)=0$. Then $N(N(x))=0$ for $x \neq \infty$ and $N(N(\infty))=\infty$. Hence N does not satisfy a double negative law.
(5) $([0,1], \leq, \vee, \oplus, \wedge, 0,1)$ is a complete co-residuated lattice where

$$
\begin{aligned}
& x \oplus y=\left(x^{p}+y^{p}\right)^{\frac{1}{p}} 1 \leq p<\infty, \\
& x \ominus y=\bigwedge\left\{z \in[0,1] \left\lvert\,\left(z^{p}+y^{p}\right)^{\frac{1}{p}} \geq x\right.\right\} \\
& =\bigwedge\left\{z \in[0,1] \left\lvert\, z \geq\left(x^{p}-y^{p}\right)^{\frac{1}{p}}\right.\right\}=\left(x^{p}-y^{p}\right)^{\frac{1}{p}} \vee 0,
\end{aligned}
$$

Put $N(x)=1 \ominus x=\left(1-x^{p}\right)^{\frac{1}{p}}$ for $1 \leq p<\infty$. Then $N(N(x))=x$ for $x \in[0,1]$. Hence N satisfies a double negative law.
(6) Let $P(X)$ be the collection of all subsets of X. Then $(P(X), \subset, \cup, \cap, \oplus=$ $\cup, \emptyset, X)$ is a complete co-residuated lattice where

$$
\begin{aligned}
& A \ominus B=\bigwedge\{C \in P(X) \mid B \cup C \supset A\} \\
& =A \cap B^{c}=A-B .
\end{aligned}
$$

Put $N(A)=X \ominus A=A^{c}$ for each $A \subset X$. Then $N(N(A))=A$. Hence N satisfies a double negative law.

Lemma 2.3. [11] Let $(L, \wedge, \vee, \oplus, \ominus, 0,1)$ be a complete co-residuated lattice. For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z,(x \oplus y) \leq(x \oplus z), y \ominus x \leq z \ominus x$ and $x \ominus z \leq x \ominus y$.
(2) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \ominus y=\bigvee_{i \in \Gamma}\left(x_{i} \ominus y\right)$ and $x \ominus\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigvee_{i \in \Gamma}\left(x \ominus y_{i}\right)$.
(3) $\left(\bigwedge_{i \in \Gamma} x_{i}\right) \ominus y \leq \bigwedge_{i \in \Gamma}\left(x_{i} \ominus y\right)$
(4) $x \ominus\left(\bigvee_{i \in \Gamma} y_{i}\right) \leq \bigwedge_{i \in \Gamma}\left(x \ominus y_{i}\right)$.
(5) $x \ominus x=0, x \ominus 0=x$ and $0 \ominus x=0$. Moreover, $x \ominus y=0$ iff $x \leq y$.
(6) $y \oplus(x \ominus y) \geq x, y \geq x \ominus(x \ominus y)$ and $(x \ominus y) \oplus(y \ominus z) \geq x \ominus z$.
(7) $x \ominus(y \oplus z)=(x \ominus y) \ominus z=(x \ominus z) \ominus y$.
(8) $x \ominus y \geq(x \oplus z) \ominus(y \oplus z), y \ominus x \geq(z \ominus x) \ominus(z \ominus y)$ and $(x \oplus y) \ominus(z \oplus w) \leq$ $(x \ominus z) \oplus(y \ominus w)$.
(9) $x \oplus y=0$ iff $x=0$ and $y=0$.
(10) $(x \oplus y) \ominus z \leq x \oplus(y \ominus z)$ and $(x \ominus y) \oplus z \geq x \ominus(y \ominus z)$.
(11) If L satisfies a double negative law and $N(x)=1 \ominus x$, then $N(x \oplus y)=$ $N(x) \ominus y=N(y) \ominus x$ and $x \ominus y=N(y) \ominus N(x)$. Moreover, $N\left(\bigvee_{i \in \Gamma} x_{i}\right)=\bigwedge_{i \in \Gamma} N\left(x_{i}\right)$ and $N\left(\bigwedge_{i \in \Gamma} x_{i}\right)=\bigvee_{i \in \Gamma} N\left(x_{i}\right)$.

Definition 2.4. [11] Let $(L, \wedge, \vee, \oplus, \ominus, 0,1)$ be a complete co-residuated lattice. Let X be a set. A function $d_{X}: X \times X \rightarrow L$ is called a distance function if it satisfies the following conditions:
(M1) $d_{X}(x, x)=0$ for all $x \in X$,
(M2) $d_{X}(x, y) \oplus d_{X}(y, z) \geq d_{X}(x, z)$, for all $x, y, z \in X$,
(M3) If $d_{X}(x, y)=d_{X}(y, x)=0$, then $x=y$.
The pair $\left(X, d_{X}\right)$ is called a distance space.
Remark 2.5. (1) We define a distance function $d_{X}: X \times X \rightarrow[0, \infty]$. Then (X, d_{X}) is called a pseudo-quasi-metric space.
(2) Let $(L, \wedge, \vee, \oplus, \ominus, 0,1)$ be a complete co-residuated lattice. Define a function $d_{L}: L \times L \rightarrow L$ as $d_{L}(x, y)=x \ominus y$. By Lemma 2.3 (5) and (8), $\left(L, d_{L}\right)$ is a distance space. Moreover, we define a function $d_{L^{X}}: L^{X} \times L^{X} \rightarrow L$ as $d_{L^{X}}(A, B)=$ $\bigvee_{x \in X}(A(x) \ominus B(x))$. Then $\left(L^{X}, d_{L^{X}}\right)$ is a distance space.
(3) We define a function $d_{[0, \infty]^{X}}:[0, \infty]^{X} \times[0, \infty]^{X} \rightarrow[0, \infty]$ as $d_{[0, \infty]^{X}}(A, B)=$ $\bigvee_{x \in X}(A(x) \ominus B(x))=\bigvee_{x \in X}((B(x)-A(x)) \vee 0)$. Then $\left([0, \infty]^{X}, d_{[0, \infty]^{X}}\right)$ is a pseudo-quasi-space.
(4) If $\left(X, d_{X}\right)$ is a distance space and we define a function $d_{X}^{-1}(x, y)=d_{X}(y, x)$, then $\left(X, d_{X}^{-1}\right)$ is a distance space.
(5) Let $(L, \wedge, \vee, \oplus, \ominus, 0,1)$ be a complete co-residuated lattice. Let $\left(X, d_{X}\right)$ be a distance space and define $\left(d_{X} \uplus d_{X}\right)(x, z)=\bigwedge_{y \in X}\left(d_{X}(x, y) \oplus d_{X}(y, z)\right)$ for each $x, z \in X$. By (M2), $\left(d_{X} \uplus d_{X}\right)(x, z) \geq d_{X}(x, z)$ and $\left(d_{X} \uplus d_{X}\right)(x, z) \leq d_{X}(x, x) \oplus$ $d_{X}(x, z)=d(x, z)$. Hence $\left(d_{X} \uplus d_{X}\right)=d_{X}$.

3. Approximation operators and fuzzy rough sets

Definition 3.1. A subset $\tau \subset L^{X}$ is called an Alexandrov topology on X iff it satisfies the following conditions:
(O1) $\alpha_{X} \in \tau$.
(O2) If $A_{i} \in \tau$ for all $i \in I$, then $\bigvee_{i \in I} A_{i}, \bigwedge_{i \in I} A_{i} \in \tau$.
(O3) If $A \in \tau$ and $\alpha \in L$, then $A \ominus \alpha, \alpha \oplus A \in \tau$.
Definition 3.2. A map $\mathcal{J}: L^{X} \rightarrow L^{X}$ is called an \ominus-upper approximation operator if it satisfies the following conditions, for all $A, A_{i} \in L^{X}$, and $\alpha \in L$,
(J1) $\mathcal{J}(A \ominus \alpha)=\mathcal{J}(A) \ominus \alpha$,
(J2) $\mathcal{J}\left(\bigvee_{i \in I} A_{i}\right)=\bigvee_{i \in I} \mathcal{J}\left(A_{i}\right)$,
(J3) $\mathcal{J}(A) \geq A$ and $\mathcal{J}(\mathcal{J}(A))=\mathcal{J}(A)$.
Definition 3.3. A map $\mathcal{H}: L^{X} \rightarrow L^{X}$ is called an \oplus-lower approximation operator if it satisfies the following conditions, for all $A, A_{i} \in L^{X}$, and $\alpha \in L$,
(H1) $\mathcal{H}(\alpha \oplus A)=\alpha \oplus \mathcal{H}(A)$,
(H2) $\mathcal{H}\left(\bigwedge_{i \in I} A_{i}\right)=\bigwedge_{i \in I} \mathcal{H}\left(A_{i}\right)$,
(H3) $\mathcal{H}(A) \leq A$ and $\mathcal{H}(\mathcal{H}(A))=\mathcal{H}(A)$.
Let \mathcal{H} (resp. \mathcal{J}) be \oplus-lower (resp. \ominus-upper) approximation operator on X. As a generalization of fuzzy rough set, the pair $(\mathcal{H}(A), \mathcal{J}(A))$ is called an (\oplus, \ominus)-fuzzy rough set for $A \in L^{X}$.

The map $\alpha: L^{X} \rightarrow L$ is an fuzzy accuracy measure defined, for $A \in L^{X}$

$$
\alpha(A)=\bigvee_{x \in X}(\mathcal{J}(A)(x) \ominus \mathcal{H}(A)(x))
$$

THEOREM 3.4. Let $d_{X} \in L^{X \times X}$ be a distance function. Define $\mathcal{J}_{d_{X}}, \mathcal{H}_{d_{X}}: L^{X} \rightarrow$ L^{X} as follows

$$
\begin{aligned}
\mathcal{J}_{d_{X}}(B)(x) & =\bigvee_{y \in X}\left(B(y) \ominus d_{X}(x, y)\right), \\
\mathcal{H}_{d_{X}}(A)(y) & =\bigwedge_{x \in X}\left(A(x) \oplus d_{X}(x, y)\right) .
\end{aligned}
$$

Then the followings hold.
(1) $\mathcal{J}_{d_{X}}$ is an \ominus-upper approximation operator.
(2) $\mathcal{H}_{d_{X}}$ is an \oplus-lower approximation operator. Moreover, $\left(\mathcal{H}_{d_{X}}(A), \mathcal{J}_{d_{X}}(A)\right)$ is an (\oplus, \ominus)-fuzzy rough set for $A \in L^{X}$.
(3) $\mathcal{J}_{d_{X}}\left(\alpha_{X}\right)=\alpha_{X}, \mathcal{J}_{d_{X}}\left(d_{X}(x,-)\right)=d_{X}(x,-)$ and $\alpha \oplus \mathcal{J}_{d_{X}}(A) \geq \mathcal{J}_{d_{X}}(\alpha \oplus A)$ for each $\alpha \in L, A \in L^{X}$ and $\mathcal{J}_{d_{X}}(A) \leq \mathcal{J}_{d_{X}}(B)$ for $A \leq B$.
(4) $\mathcal{H}_{d_{X}}\left(\alpha_{X}\right)=\alpha_{X}, \mathcal{H}_{d_{X}}\left(d_{X}(x,-)\right)=d_{X}(x,-)$ and $\mathcal{H}_{d_{X}}(A) \ominus \alpha \leq \mathcal{H}_{d_{X}}(A \ominus \alpha)$ for each $\alpha \in L, A \in L^{X}$ and $\mathcal{H}_{d_{X}}(A) \leq \mathcal{H}_{d_{X}}(B)$ for $A \leq B$.
(5) $\mathcal{H}_{d_{X}}(A)=\bigvee\left\{B \mid \mathcal{J}_{d_{X}}(B) \leq A\right\}$ and $\mathcal{J}_{d_{X}}(\alpha \ominus A)=\alpha \ominus \mathcal{H}_{d_{X}^{-1}}(A)$, for all $A \in L^{X}$.
(6) $\mathcal{J}_{d_{X}}(B)=\bigwedge\left\{A \mid \mathcal{H}_{d_{X}}(A) \geq B\right\}$.
(7) For each $A, B \in L^{X}, \mathcal{H}_{d_{X}}\left(\mathcal{J}_{d_{X}}(B)\right)=\mathcal{J}_{d_{X}}(B)$ and $\mathcal{J}_{d_{X}}\left(\mathcal{H}_{d_{X}}(A)\right)=\mathcal{H}_{d_{X}}(A)$
(8) $\tau_{d_{X}}=\left\{A \in L^{X} \mid A(x) \oplus d_{X}(x, y) \geq A(y)\right\}$ is an Alexandrov topology on X with $d_{X}(x,-),\left(\alpha \ominus d_{X}(-, x)\right) \in \tau_{d_{X}}$. Moreover,

$$
\begin{aligned}
& \tau_{d_{X}}=\left\{\mathcal{H}_{d_{X}}(A) \mid A \in L^{X}\right\}=\left\{\bigwedge_{y \in X}\left(A(y) \oplus d_{X}(y,-)\right) \mid A \in L^{X}\right\} \\
& =\left\{\mathcal{J}_{d_{X}}(A) \mid A \in L^{X}\right\}=\left\{\bigvee_{y \in X}\left(A(y) \ominus d_{X}(-, y)\right) \mid A \in L^{X}\right\} .
\end{aligned}
$$

Proof. (1) (J1) For each $A \in L^{X}$ and $\alpha \in L$, by Lemma 2.3 (7),

$$
\begin{aligned}
& \mathcal{J}_{d_{X}}(A \ominus \alpha)(x)=\bigvee_{y \in X}\left((A(y) \ominus \alpha) \ominus d_{X}(x, y)\right) \\
& =\bigvee_{y \in X}\left(\left(A(y) \ominus d_{X}(x, y)\right) \ominus \alpha=\mathcal{J}_{d_{X}}(A)(x) \ominus \alpha .\right.
\end{aligned}
$$

(J2) For each $A_{i} \in L^{X}$, by Lemma 2.3(2), $\mathcal{J}_{d_{X}}\left(\bigvee_{i \in \Gamma} A_{i}\right)=\bigvee_{i \in \Gamma} \mathcal{J}_{d_{X}}\left(A_{i}\right)$.
(J3) For each $A \in L^{X}, \mathcal{J}_{d_{X}}(A)(x)=\bigvee_{y \in X}\left(A(y) \ominus d_{X}(x, y)\right) \geq A(x) \ominus d_{X}(x, x)=$ $A(x)$.

For each $A \in L^{X}$,

$$
\begin{aligned}
& \mathcal{J}_{d_{X}}\left(\mathcal{J}_{d_{X}}(A)\right)(x)=\bigvee_{y \in X}\left(\mathcal{J}_{d_{X}}(A)(y) \ominus d_{X}(x, y)\right) \\
& =\bigvee_{y \in X}\left(\bigvee_{z \in X}\left(A(z) \ominus d_{X}(y, z)\right) \ominus d_{X}(x, y)\right) \\
& =\bigvee_{y \in X}\left(\bigvee_{z \in X}\left(\left(A(z) \ominus d_{X}(y, z)\right) \ominus d_{X}(x, y)\right)\right) \text { (by Lemma 2.3 (2)) } \\
& =\bigvee_{y, z \in X}\left(A(z) \ominus\left(d_{X}(y, z) \oplus d_{X}(x, y)\right)\right)(\text { by Lemma } 2.3(7)) \\
& =\bigvee_{z \in X}\left(A(z) \ominus \bigwedge_{y \in X}\left(d_{X}(y, z) \oplus d_{X}(x, y)\right)\right) \text { (by Lemma 2.3 (2)) } \\
& =\bigvee_{z \in X}\left(A(z) \ominus d_{X}(x, z)\right)=\mathcal{J}_{d_{X}}(A)(x) .
\end{aligned}
$$

Hence $\mathcal{J}_{d_{X}}$ is an \ominus-upper approximation operator.
(2) (H1) $\mathcal{H}_{d_{X}}(\alpha \oplus A)(y)=\bigwedge_{x \in X}\left((\alpha \oplus A)(x) \oplus d_{X}(x, y)\right)=\alpha \oplus \bigwedge_{x \in X}(A(x) \oplus$ $\left.d_{X}(x, y)\right)=\alpha \oplus \mathcal{H}_{d_{X}}(A)(y)$.
(H2) $\mathcal{H}_{d_{X}}\left(\bigwedge_{i \in \Gamma} A_{i}\right)=\bigwedge_{x \in X}\left(\bigwedge_{i \in \Gamma} A_{i}(x) \oplus d_{X}(x, y)\right)=\bigwedge_{i \in \Gamma}\left(\bigwedge_{x \in X}\left(A_{i}(x) \oplus d_{X}(x, y)\right)=\right.$ $\bigwedge_{i \in \Gamma} \mathcal{H}_{d_{X}}\left(A_{i}\right)(y)$.
(H3) $\mathcal{H}_{d_{X}}(A)(y)=\bigvee_{x \in X}\left(A(x) \oplus d_{X}(x, y)\right) \leq A(y) \oplus d_{X}(y, y)=A(y)$.
For all $B \in L^{X}, z \in X$,

$$
\begin{aligned}
& \mathcal{H}_{d_{X}}\left(\mathcal{H}_{d_{X}}(A)\right)(z)=\bigwedge_{x \in X}\left(\mathcal{H}_{d_{X}}(A)(x) \oplus d_{X}(x, z)\right) \\
& =\bigwedge_{x \in X}\left(\bigwedge_{y \in X}\left(A(y) \oplus d_{X}(y, x)\right) \oplus d_{X}(x, z)\right) \\
& =\bigwedge_{y \in X}\left(A(y) \oplus \bigwedge_{x \in X}\left(d_{X}(y, x) \oplus d_{X}(x, z)\right)\right) \\
& =\bigwedge_{y \in X}\left(A(y) \oplus d_{X}(y, z)\right)=\mathcal{H}_{d_{X}}(A)(z)
\end{aligned}
$$

Hence $\mathcal{H}_{d_{X}}$ is an \oplus-lower approximation operator.
(3) Since $\mathcal{J}_{d_{X}}\left(\alpha_{X}\right)(x)=\bigvee_{y \in X}\left(\alpha_{X}(y) \ominus d_{X}(x, y)\right) \leq \alpha$, by (J3), $\mathcal{J}_{d_{X}}\left(\alpha_{X}\right)=\alpha_{X}$. For each $x, z \in X$,

$$
\mathcal{J}_{d_{X}}\left(d_{X}(x,-)\right)(z)=\bigvee_{y \in X}\left(d_{X}(x, y) \ominus d_{X}(z, y)\right)=d_{X}(x, z)
$$

For each $A \in L^{X}$ and $\alpha \in L$,

$$
\begin{aligned}
& \alpha \oplus \mathcal{J}_{d_{X}}(A)(x)=\alpha \oplus \bigvee_{y \in X}\left(A(y) \ominus d_{X}(x, y)\right) \\
& \geq \bigvee_{y \in X}\left(\alpha \oplus\left(A(y) \ominus d_{X}(x, y)\right)\right) \\
& \geq \bigvee_{y \in X}\left((\alpha \oplus A)(y) \ominus d_{X}(x, y)\right)(\text { by Lemma } 2.3(10)) \\
& =\mathcal{J}_{d_{X}}(\alpha \oplus A)(x)
\end{aligned}
$$

For $A \leq B, \mathcal{J}_{d_{X}}(A) \leq \mathcal{J}_{d_{X}}(B)$.
(4) Since $\mathcal{H}_{d_{X}}\left(\alpha_{X}\right)(y)=\bigwedge_{x \in X}\left(\alpha_{X}(x) \oplus d_{X}(x, y)\right) \geq \alpha, \mathcal{H}_{d_{X}}\left(\alpha_{X}\right)=\alpha_{X}$. For $x, z \in$ X,

$$
\mathcal{H}_{d_{X}}\left(d_{X}(x,-)\right)(z)=\bigwedge_{y \in X}\left(d_{X}(x, y) \oplus d_{X}(y, z)\right)=d_{X}(x, z) .
$$

For each $A \in L^{X}$ and $\alpha \in L$,

$$
\begin{aligned}
& \mathcal{H}_{d_{X}}(A \ominus \alpha)(z)=\bigwedge_{x \in X}\left((A \ominus \alpha)(x) \oplus d_{X}(x, z)\right) \\
& \geq \bigwedge_{x \in X}\left(\left(A(x) \oplus d_{X}(x, z)\right) \ominus \alpha\right) \\
& \geq \bigwedge_{x \in X}\left(A(x) \oplus d_{X}(x, z)\right) \ominus \alpha \\
& =\mathcal{H}_{d_{X}}(A)(z) \ominus \alpha .
\end{aligned}
$$

(5) By (J2), for each $A \in L^{X}$,

$$
\begin{aligned}
& \bigvee\left\{B(y) \mid \mathcal{J}_{d_{X}}(B)(x) \leq A(x)\right\}=\bigvee\left\{B(y) \mid \bigvee_{y \in Y}\left(B(y) \ominus d_{X}(x, y)\right) \leq A(x)\right\} \\
& =\bigwedge_{x \in X}\left(d_{X}(x, y) \oplus A(x)\right)=\mathcal{H}_{d_{X}}(A)(y) .
\end{aligned}
$$

For all $B \in L^{X}, x \in X$,

$$
\begin{aligned}
& \mathcal{J}_{d_{X}}(\alpha \ominus B)(x)=\bigvee_{y \in X}\left((\alpha \ominus B(y)) \ominus d_{X}(x, y)\right) \\
& =\bigvee_{y \in X}\left(\left(\alpha \ominus\left(B(y) \oplus d_{X}(x, y)\right)(\text { by Lemma } 2.3 \text { (7)) }\right.\right. \\
& =\alpha \ominus \bigvee_{y \in X}\left(\left(B(y) \oplus d_{X}(x, y)\right)\right. \\
& =\alpha \ominus \mathcal{H}_{d_{X}^{-1}}(B)(x)
\end{aligned}
$$

(6) By (H2), for each $B \in L^{X}$,

$$
\begin{aligned}
& \bigwedge\left\{A(x) \mid \mathcal{H}_{d_{X}}(A)(y) \geq B(y)\right\} \\
& =\bigwedge\left\{A(x) \mid \bigwedge_{x \in X}\left(A(x) \oplus d_{X}(x, y)\right) \geq B(y)\right\} \\
& =\bigvee_{y \in Y}\left(B(y) \ominus d_{X}(x, y)\right)=\mathcal{J}_{d_{X}}(B)(x) .
\end{aligned}
$$

(7) For each $B \in L^{X}$,

$$
\begin{aligned}
& \mathcal{H}_{d_{X}}\left(\mathcal{J}_{d_{X}}(B)\right)(z)=\bigwedge_{x \in X}\left(\mathcal{J}_{d_{X}}(B)(x) \oplus d_{X}(x, z)\right) \\
& =\bigwedge_{x \in X}\left(\bigvee_{y \in X}\left(B(y) \ominus d_{X}(x, y)\right) \oplus d_{X}(x, z)\right) \\
& \geq \bigwedge_{x \in X} \bigvee_{y \in X}\left(\left(B(y) \ominus d_{X}(x, y)\right) \oplus d_{X}(x, z)\right) \\
& \left.\geq \bigwedge_{x \in X} \bigvee_{y \in X}\left(B(y) \ominus{ }^{(1)}\left(d_{X}(x, y) \ominus d_{X}(x, z)\right)\right) \quad \text { (by Lemma } 2.3(10)\right) \\
& \geq \bigvee_{y \in X}\left(B(y) \ominus \bigvee_{x \in X}\left(d_{X}(x, y) \ominus d_{X}(x, z)\right)\right) \\
& \geq \bigvee_{y \in X}\left(B(y) \ominus d_{X}(z, y)\right)=\mathcal{J}_{d_{X}}(B)(z), \\
& \mathcal{J}_{d_{X}}\left(\mathcal{H}_{d_{X}}(B)\right)(x)=\bigvee_{y \in X}\left(\mathcal{H}_{d_{X}}(B)(y) \ominus d_{X}(x, y)\right) \\
& =\bigvee_{y \in X}\left(\bigwedge_{z \in X}\left(B(z) \oplus d_{X}(z, y)\right) \ominus d_{X}(x, y)\right) \\
& \leq \bigvee_{y \in X} \bigwedge_{z \in X}\left(\left(B(z) \oplus d_{X}(z, y)\right) \ominus d_{X}(x, y)\right) \\
& \leq \bigvee_{y \in X} \bigwedge_{z \in X}\left(B(z) \oplus\left(d_{X}(z, y) \ominus d_{X}(x, y)\right) \quad(\text { by Lemma } 2.3(10))\right. \\
& \leq \bigwedge_{z \in X}\left(B(z) \oplus \bigvee_{y \in X}\left(d_{X}(z, y) \ominus d_{X}(x, y)\right)\right. \\
& =\bigwedge_{z \in X}\left(B(z) \oplus d_{X}(x, z)\right)=\mathcal{H}_{d_{X}}(B)(x) .
\end{aligned}
$$

(8) (O1) Since $\alpha_{X}(x) \oplus d_{X}(x, y) \geq \alpha_{X}(y), \alpha_{X} \in \tau_{d_{X}}$.
(O2) If $A_{i} \in \tau_{d_{X}}$ for all $i \in I, \bigvee_{i \in I} A_{i}(x) \oplus d_{X}(x, y) \geq \bigvee_{i \in I}\left(A_{i}(x) \oplus d_{X}(x, y)\right) \geq$ $\bigvee_{i \in I} A_{i}(y)$ and $\bigwedge_{i \in I} A_{i}(x) \oplus d_{X}(x, y)=\bigwedge_{i \in I}\left(A_{i}(x) \oplus d_{X}(x, y)\right) \geq \bigwedge_{i \in I} A_{i}(y)$. Hence $\bigvee_{i \in I} A_{i}, \bigwedge_{i \in I} A_{i} \in \tau_{d_{X}}$.
(O3) If $A \in \tau_{d_{X}}$ and $\alpha \in L$, then $d_{X}(x, y) \oplus(A(x) \ominus \alpha) \oplus \alpha \geq d_{X}(x, y) \oplus A(x) \geq A(y)$. Thus $d_{X}(x, y) \oplus(A(x) \ominus \alpha) \geq A(y) \ominus \alpha$. So $A \ominus \alpha \in \tau_{d_{X}}$. Easily, $\alpha \oplus A \in \tau_{d_{X}}$.

Since $d_{X}(x,-)(y) \oplus d_{X}(y, z) \geq d_{X}(x,-)(z), d_{X}(x,-) \in \tau_{d_{X}}$. Since

$$
\begin{aligned}
& \left(\alpha \ominus d_{X}(-, x)\right)(y) \oplus d_{X}(y, z) \oplus d_{X}(z, x) \\
& \geq\left(\alpha \ominus d_{X}(-, x)\right)(y) \oplus d_{X}(y, x) \geq \alpha
\end{aligned}
$$

$\left(\alpha \ominus d_{X}(-, x)\right)(y) \oplus d_{X}(y, z) \geq \alpha \ominus d_{X}(z, x)$, that is, $\left(\alpha \ominus d_{X}(-, x)\right) \in \tau_{d_{X}}$.
For $A \in \tau_{d_{X}}, A=\bigwedge_{x \in X}\left(A(x) \oplus d_{X}(x,-)\right)=\mathcal{H}_{d_{X}}(A) \in \tau_{d_{X}}$ and $A=\bigvee_{x \in X}(A(x) \ominus$ $\left.d_{X}(-, x)\right)=\mathcal{J}_{d_{X}}(A) \in \tau_{d_{X}}$.

Theorem 3.5. (1) Let $\mathcal{H}: L^{X} \rightarrow L^{X}$ be an \oplus-lower approximation operator iff there exist a distance function $d_{\mathcal{H}}$ on X such that

$$
\mathcal{H}(A)(y)=\bigwedge_{x \in X}\left(A(x) \oplus d_{\mathcal{H}}(x, y)\right) .
$$

(2) If L satisfies a double negative law, then $\mathcal{J}: L^{X} \rightarrow L^{X}$ be an \ominus-upper approximation operator iff there exist a distance function $d_{\mathcal{J}}$ on X such that

$$
\mathcal{J}(B)(x)=\bigvee_{y \in X}\left(B(y) \ominus d_{\mathcal{J}}(x, y)\right)
$$

Proof. (1) (\Rightarrow) Put $d_{\mathcal{H}}: X \times X \rightarrow L$ as $d_{\mathcal{H}}(x, y)=\mathcal{H}\left(0_{x}\right)(y)$ where $0_{x}(x)=0$ and $0_{x}(y)=1$ for $x \neq y \in X$.
(M1) $d_{\mathcal{H}}(x, x)=\mathcal{H}\left(0_{x}\right)(x) \leq 0_{x}(x)=0$.
(M2) Since $A=\bigwedge_{y \in X}\left(A(y) \oplus 0_{y}\right)$ and $\mathcal{H}\left(0_{x}\right)=\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y) \oplus 0_{y}\right)$,

$$
\begin{aligned}
& \bigwedge_{y \in X}\left(d_{\mathcal{H}}(x, y) \oplus d_{\mathcal{H}}(y, z)\right) \\
& =\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y) \oplus \mathcal{H}\left(0_{y}\right)(z)\right)(\text { by }(\mathrm{H} 2)) \\
& =\mathcal{H}\left(\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y) \oplus 0_{y}\right)(z)\right)=\mathcal{H}\left(\mathcal{H}\left(0_{x}\right)\right)(z) \\
& =\mathcal{H}\left(0_{x}\right)(z)=d_{\mathcal{H}}(x, z) .
\end{aligned}
$$

Hence $d_{\mathcal{H}}$ is a distance function. Moreover,

$$
\begin{aligned}
& \mathcal{H}(A)(y)=\mathcal{H}\left(\bigwedge_{x \in X}\left(A(x) \oplus 0_{x}\right)\right)(y) \\
& =\bigwedge_{x \in X}\left(A(x) \oplus \mathcal{H}\left(0_{x}\right)(y)\right) \\
& \left.=\bigwedge_{x \in X}\left(A(x) \oplus d_{\mathcal{H}}(x, y)\right)\right) .
\end{aligned}
$$

(\Leftarrow) It follow from Theorem 3.4(2).
(2) (\Rightarrow) Put $d_{\mathcal{J}}: X \times X \rightarrow L$ as $d_{\mathcal{J}}(x, y)=N\left(\mathcal{J}\left(N\left(0_{y}\right)\right)(x)\right.$ where $0_{x}(x)=0$ and $0_{x}(y)=1$ for $x \neq y \in X$.
(M1) Since $\mathcal{J}\left(N\left(0_{x}\right) \geq N\left(0_{x}, d_{\mathcal{J}}(x, x)=N\left(\mathcal{J}\left(N\left(0_{x}\right)\right)(x) \leq N\left(N\left(0_{x}\right)(x)=0\right.\right.\right.\right.$.
(M2) Since $A=\bigwedge_{y \in X}\left(A(y) \oplus 0_{y}\right), N(A)=\bigwedge_{y \in X}\left(N(A)(y) \oplus 0_{y}\right)$, by Lemma 2.3(11), $A=\bigvee_{y \in X}\left(N\left(0_{y}\right) \ominus N(A)(y)\right)$,

$$
\begin{aligned}
& N\left(\bigwedge_{y \in X}\left(d_{\mathcal{J}}(x, y) \oplus d_{\mathcal{J}}(y, z)\right)\right) \\
& =\bigvee_{y \in X}\left(N\left(N \mathcal{J}\left(N\left(0_{y}\right)\right)(x) \oplus N \mathcal{J}\left(N\left(0_{z}\right)\right)(y)\right)\right)(\text { by (H2)) } \\
& =\bigvee_{y \in X}\left(\mathcal{J}\left(N\left(0_{y}\right)\right)(x) \ominus N\left(\mathcal{J}\left(N\left(0_{z}\right)\right)(y)\right)\right)(\text { by (H2)) } \\
& =\mathcal{J}\left(\bigvee_{y \in X}\left(\left(N\left(0_{y}\right)\right)(x) \ominus N\left(\mathcal{J}\left(N\left(0_{z}\right)\right)(y)\right)\right)\right)(\text { by (H2)) } \\
& =\mathcal{J}\left(\mathcal{J}\left(N\left(0_{z}\right)\right)\right)(x)=\mathcal{J}\left(N\left(0_{z}\right)\right)(x) \\
& =N\left(d_{\mathcal{J}}(x, z)\right) .
\end{aligned}
$$

Hence $d_{\mathcal{J}}$ is a distance function. Moreover,

$$
\begin{aligned}
& \mathcal{J}(B)(x)=\mathcal{J}\left(\bigvee_{y \in Y}\left(N\left(0_{y}\right)(x) \ominus N(B)(y)\right)\right. \\
& =\bigvee_{y \in Y}\left(\mathcal{J}\left(N\left(0_{y}\right)\right)(x) \ominus N(B)(y)\right) \\
& =\bigvee_{y \in Y}\left(B(y) \ominus N\left(\mathcal{J}\left(N\left(0_{y}\right)\right)\right)(x)\right) \\
& \left.=\bigvee_{y \in Y}\left(B(y) \ominus d_{\mathcal{J}}(x, y)\right)\right) .
\end{aligned}
$$

(\Leftarrow) It follow from Theorem 3.4(1).

Example 3.6. Let $X=\{x, y, z\}$ be a set and $\left(L=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}, \oplus, \ominus, 0,1\right)$ be a complete co-residuated lattice with

$$
x \oplus y=1 \wedge(x+y), x \ominus y=(x-y) \vee 0 .
$$

Define $d_{X}^{1}, d_{X}: X \times X \rightarrow L$ as

$$
d_{X}^{1}=\left(\begin{array}{ccc}
0 & 1 & \frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{2} & 0
\end{array}\right), d_{X}=\left(\begin{array}{ccc}
0 & \frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{2} & 0
\end{array}\right)
$$

Since $d_{X}^{1}(x, z) \oplus d_{X}^{1}(z, y)=\frac{1}{4}+\frac{1}{2} \nsupseteq d_{X}^{1}(x, y)=1, d_{X}^{1}$ is not a distance function. Since $d_{X} \uplus d_{X}=d_{X}$ from Remark 2.5(5), d_{X} is a distance function.

By Theorem 3.4(8), we obtain an Alexandrov topology $\tau_{d_{X}}=\left\{\mathcal{H}_{d_{X}}(C) \mid C \in\right.$ $\left.L^{X}\right\}=\left\{\mathcal{J}_{d_{X}}(D) \mid D \in L^{X}\right\}$ where

$$
\begin{aligned}
& \mathcal{H}_{d_{\tau_{X}}}(C)=\wedge_{x \in X}\left(C(x) \oplus d_{\tau_{X}}(x,-)\right) \\
& =\left(\begin{array}{l}
C(x) \wedge\left(C(y)+\frac{1}{2}\right) \wedge\left(C(z)+\frac{3}{4}\right) \\
\left(C(x)+\frac{3}{4}\right) \wedge C(y) \wedge\left(C(z)+\frac{1}{2}\right) \\
\left(C(x)+\frac{1}{4}\right) \wedge\left(C(y)+\frac{1}{4}\right) \wedge C(z)
\end{array}\right) \\
& =\left(\begin{array}{l}
D(x) \vee\left(D(y)-\frac{3}{4}\right) \vee\left(D(z)-\frac{1}{4}\right) \\
\mathcal{J}_{d_{\tau_{X}}}(D)=\bigvee_{x \in X}\left(D(x) \ominus d_{\tau_{X}}(-, x)\right) \\
\left(D(x)-\frac{1}{2}\right) \vee D(y) \vee\left(D(z)-\frac{1}{4}\right) \\
\left(D(x)-\frac{3}{4}\right) \vee\left(D(y)-\frac{1}{2}\right) \vee D(z)
\end{array}\right)
\end{aligned}
$$

The pair $\left(\mathcal{H}_{d_{X}}(A), \mathcal{J}_{d_{X}}(A)\right)$ is an (\oplus, \ominus)-fuzzy rough set for $A \in L^{X}$.

References

[1] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
[2] P. Chen, D. Zhang, Alexandroff co-topological spaces, Fuzzy Sets and Systems, 161 (2010), 2505-2514.
[3] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
[4] U. Höhle, E.P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publishers, Boston, 1995.
[5] U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, 1999.
[6] F. Jinming, I-fuzzy Alexandrov topologies and specialization orders, Fuzzy Sets and Systems, 158 (2007), 2359-2374.
[7] Q. Junsheng, Hu. Bao Qing, On $(\odot, \&)$-fuzzy rough sets based on residuated and co-residuated lattices, Fuzzy Sets and Systems, 336 (2018), 54-86.
[8] Y.C. Kim, Join-meet preserving maps and Alexandrov fuzzy topologies, Journal of Intelligent and Fuzzy Systems, 28 (2015), 457-467.
[9] Y.C. Kim,Categories of fuzzy preorders, approximation operators and Alexandrov topologies, Journal of Intelligent and Fuzzy Systems, 31 (2016), 1787-1793.
[10] Y.C. Kim, J.M Ko, Fuzzy complete lattices, Alexandrov L-fuzzy topologies and fuzzy rough sets, Journal of Intelligent and Fuzzy Systems, 38 (2020), 3253-3266.
[11] Y.C. Kim, J.M Ko, Preserving maps and approximation operators in complete co-residuated lattices, Journal of the korean Insitutute of Intelligent Systems, 30 (5)(2020), 389-398.
[12] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157 (2006), 1865-1885.
[13] Z.M. Ma, B.Q. Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Information Sciences, 218 (2013), 194-204.
[14] J.S. Mi, Y. Leung, H.Y. Zhao, T. Feng, Generalized fuzzy rough sets determined by a trianglar norm, Information Sciences, 178 (2008), 3203-3213.
[15] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982), 341-356.
[16] Z. Pawlak, Rough sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
[17] A. M. Radzikowska, E.E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems, 126 (2002), 137-155.
[18] A.M. Radzikowska, E.E. Kerre, Characterisation of main classes of fuzzy relations using fuzzy modal operators, Fuzzy Sets and Systems, 152 (2005), 223-247.
[19] S.E. Rodabaugh, E.P. Klement, Topological and Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.
[20] Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications, 58 (2009), 189-201.
[21] S. P. Tiwari, A.K. Srivastava, Fuzzy rough sets, fuzzy preorders and fuzzy topologies, Fuzzy Sets and Systems, 210 (2013), 63-68.
[22] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.
[23] M. Ward, R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335-354,
[24] W.Z. Wu, Y. Leung, J.S. Mi, On charterizations of (Φ, T)-fuzzy approximation operators, Fuzzy Sets and Systems, 154 (2005), 76-102.
[25] M.C. Zheng, G.J. Wang, Coresiduated lattice with applications, Fuzzy systems and Mathematics, 19 (2005), 1-6.

Ju-Mok Oh

Department of Mathematics, Gangneung-Wonju National, Gangneung 25457, Korea
E-mail: jumokoh@gwnu.ac.kr

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National, Gangneung 25457, Korea
E-mail: yck@gwnu.ac.kr

[^0]: Received December 1, 2020. Accepted March 4, 2021. Published online March 30, 2021.
 2010 Mathematics Subject Classification: 03E72, 03G10, 06A15, 54F05.
 Key words and phrases: Distance functions, co-residuated lattices, Alexandrov topologies , approximation operators, (\oplus, \ominus)-fuzzy rough set.
 *Corresponding author.
 \dagger This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 (C) The Kangwon-Kyungki Mathematical Society, 2021.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

